References
1.Yan, W., Apweiler, R., Balgley, B.M., Boontheung, P., Bundy, J.L., Cargile, B.J., Cole, S., Fang, X., Gonzalez-Begne, M., Griffin, T.J., Hagen, F., Hu, S., Wolinsky, L.E., Lee, C.S., Malamud, D., Melvin, J.E., Menon, R., Mueller, M., Qiao, R., Rhodus, N.L., Sevinsky, J.R., States, D., Stephenson, J.L., Than, S., Yates, J.R., Yu, W., Xie, X., Xie, Y., Omenn, G.S., Loo, J.A., and Wong, D.T.: Systematic comparison of the human saliva and plasma proteomes. Proteomics Clin. Appl. 3, 116–134 (2009).
2.Soukup, M., Biesiada, I., Henderson, A., Idowu, B., Rodeback, D., Ridpath, L., Bridges, E.G., Nazar, A.M., and Bridges, K.G.: Salivary uric acid as a noninvasive biomarker of metabolic syndrome. Diabetol. Metab. Syndr. 4, 14 (2012).
3.Semba, R., Enghild, J., Venkatraman, V., Dyrlund, T., and Van Eyk, J.E.: The human eye proteome project: perspectives on an emerging proteome. Proteomics 13, 2500–2511 (2013).
4.Huang, C., Chen, M., Huang, L., and Mao, I.: Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).
5.Latzka, W.A. and Montain, S.J.: Water and electrolyte requirements for exercise. Clin. Sports Med. 18, 513–524 (1999).
6.Shirreffs, S., Aragon-Vargas, L., Chamorro, M., Maughan, R., Serratosa, L., and Zachwieja, J.: The sweating response of elite professional soccer players to training in the heat. Int. J. Sports Med. 26, 90–95 (2005).
7.Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., and Tao, X.: Fiber based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310–5336 (2014).
8.Choi, S., Lee, H., Ghaffari, R., Hyeon, T., and Kim, D.H.: Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).
9.Stoppa, M. and Chiolerio, A.: Wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014).
10.Raiszadeh, M., Ross, M., and Russo, P.: Proteomic analysis of eccrine sweat: implications for the discovery of schizophrenia biomarker proteins. J. Proteome Res. 11, 2127–2139 (2012).
11.Park, S., Ahn, J., Feng, X., Wang, S., Huang, Y., and Rogers, J.A.: Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv. Funct. Mater. 18, 2673–2684 (2008).
12.Silver, F.H., Freeman, J.W., and DeVore, D.: Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7, 18–23 (2001).
13.Peng, L., Dongzhi, Z., Jingjing, L., Hongyan, C., Yan, S., and Nailiang, Y.: Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 7, 24396–24402 (2015).
14.Bo, Y., Yang, H., Hu, Y., Yao, T., and Huang, S.: A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim. Acta 56, 2676–2681 (2011).
15.Kang, X., Wang, J., Wu, H., Aksay, I.A., Liu, J., and Lin, Y.: Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron. 25, 901–905 (2009).
16.Kumar Vashist, S., Zheng, D., Al-Rubeaan, K., Luong, J.H.T., and Sheu, F.S.: Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv. 29, 169–188 (2011).
17.Jacobs, C.B., Peairs, M.J., and Venton, B.J.: Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662, 105–127 (2010).
18.Saha, K., Agasti, S.S., Kim, C., Li, X., and Rotello, V.M.: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).
19.Luo, X., Morrin, A., Killard, A.J., and Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319–326 (2006).
20.Forrest, S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).
21.Liu, Y., Shi, L., Wang, M., Li, Z., Liu, H., and Shilpa, J.: A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application. Green Chem. 7, 655–658 (2005).
22.Nishi, N., Murakami, H., Yasui, Y., and Kakiuchi, T.: Use of highly hydrophobic ionic liquids for ion-selective electrodes of the liquid membrane type. Anal. Sci. 24, 1315–1320 (2008).
23.Penga, B., Zhub, J., Liua, X., and Qina, Y.: Potentiometric response of ion-selective membranes with ionic liquids as ion-exchanger and plasticizer. Sens. Actuators B 133, 308–314 (2008).
24.Reach, G.: Continuous glucose monitoring and diabetes health outcomes: a critical appraisal. Diab. Technol. Ther. 10, 69–80 (2008).
25.Iguchi, S. and Saito, H.T.: A flexible and wearable biosensor for tear glucose measurement. Biomed. Microdevices 9, 603 (2007).
26.Bergeron, M.F.: Heat cramps: fluid and electrolyte challenges during tennis in the heat. J. Sci. Med. Sport 6, 19–27 (2003).
27.Selva-Kumar, L.S., Wang, X., Hagen, J., Naik, R., Papautsky, I., and Heikenfeld, J.: Label free nano-aptasensor for interleukin-6 in protein-dilute biofluids such as sweat. Anal. Methods 8, 3440–3444 (2016).
28.Fraga, C.G.: Relavance, essentiality and toxicity of trace elements in human health. Mol. Aspects Med. 26, 235 (2005).
29.Newmark, S.R. and Dluhy, R.G.: Hyperkalemia and hypokalemia. JAMA 231, 631–633 (1975).
30.Gamella, M.: A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat. Anal. Chim. Acta 806, 1–7 (2014).
31.Umeda, T.: Use of saliva for monitoring unbound free cortisol levels in serum. Clin. Chim. Acta 110, 245–253 (1981).
32.Zuo, P., Li, X., Dominguez, D., and Yeb, B.: A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13, 3921–3928 (2013).
33.Sher, M., Zhuang, R., Demirci, U., and Asghar, W.: Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev. Mol. Diagn. 17, 351–366 (2017).
34.Comer, J.P.: Semi quantitative specific test paper for glucose in urine. Anal. Chem. 28, 1748–1750 (1956).
35.Martinez, A.W., Phillips, S.T., Butte, M.J., and Whitesides, G.M.: Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007).
36.Martinez, A.W., Phillips, S.T., Wiley, B.J., Gupta, M., and Whitesides, G.M.: Flash: a rapid method for prototyping paper-based microfluidic devices. Lab. Chip 8, 2146–2150 (2008).
37.Mukhopadhyay, R.: Cheap, handheld colorimeter to read paper-based diagnostic devices. Anal. Chem. 81, 8659 (2009).
38.Martinez, A.W., Phillips, S.T., and Whitesides, G.M.: Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2010).
39.Sia, S.K. and Kricka, L.J.: Lab on paper. Lab. Chip 8, 1988–1991 (2008).
40.Whitesides, G.M.: What comes next? Lab. Chip 11, 191–193 (2011).
41.Mukhopadhyay, R.: Medical diagnostics with paper and camera phones. Anal. Chem. 80, 3949 (2008).
42.Lu, Y., Shi, W., Jiang, L., Qin, J., and Lin, B.: Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30, 1497–1500 (2009).
43.Tang, S.K. and Whitesides, G.M.: Optofluid.: Fundam. Devices Appl. 1, 7–31 (2010).
44.Dungchai, W., Chailapakul, O., and Henry, C.S.: Electrochemical detection for paper-based microfluidics. Anal. Chem. 81, 5821–5826 (2009).
45.Martinez, A.W., Phillips, S.T., Carrilho, E., Thomas, S.W., Sindi, H., and Whitesides, G.M.: Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80, 3699–3707 (2008).
46.Kivlehan, F., Paolucci, M., Brennan, D., Ragoussis, I., and Galvin, P.: Three-dimensional hydrogel structures as optical sensor arrays, for the detection of specific DNA sequences. Anal. Biochem. 421, 1–8 (2012).
47.Yao, Y. and Zhang, C.: A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine. Biomed. Microdevices 18, 92 (2016).
48.Wei, X., Tian, T., Jia, S., Zhu, Z., Ma, Y., Sun, J., Lin, Z., and Yang, C.: Microfluidic distance readout sweet hydrogel integrated paper. Based analytical device (μDiSH-PAD) for visual quantitative point of-care testing. Anal. Chem. 88, 2345–2352 (2016).
49.Zheng, Y.F., Xu, G.W., Liu, D.Y., Xiong, J.H., Zhang, P.D., Zhang, C., Yang, Q., and Lv, S.: Study of urinary nucleosides as biological marker in cancer patients analyzed by micellar electrokinetic capillary chromatography. Electrophoresis 23, 4104–4109 (2002).
50.Wang, S., Ge, L., Song, X., Yu, J., Ge, S., Huang, J., and Zeng, F.: Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 31, 212–218 (2012).
51.Ge, L., Yan, J., Song, X., Yan, M., Ge, S., and Yu, J.: Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33, 1024–1031 (2012).
52.Wu, L., Ma, C., Ge, L., Kong, Q., Yan, M., Ge, S., and Yu, J.: Paper-based electrochemiluminescence origami cyto-device for multiple cancer cells detection using porous AuPd alloy as catalytically promoted nanolabels. Biosens. Bioelectron. 63, 450–457 (2015).
53.Su, M., Ge, L., Ge, S., Li, N., Yu, J., Yan, M., and Huang, J.: Paper based electrochemical cyto device for sensitive detection of cancer cells. Anal. Chim. Acta 847, 1–9 (2014).
54.Su, M., Ge, L., Kong, Q., Zheng, X., Ge, S., Li, N., Yu, J., and Yan, M.: Polymer based devices. Biosens. Bioelectron. 63, 232–239 (2015).
55.Yang, M., Zhang, W, Yang, J., Hu, B., Cao, F., Zheng, W., Chen, Y., and Jiang, X.: Skiving stacked sheets of paper into test paper for rapid and multiplexed assay. Sci. Adv. 3, eaao4862 (2017).
56.Cunningham, J., Brenes, N., and Crooks, R.: Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal. Chem. 86, 6166–6170 (2014).
57.Ihalainen, P., Pettersson, F., Pesonen, M., Viitala, T., Määttänen, A., Österbacka, R., and Peltonen, J.: An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes. Nanotechnology 25, 094009 (2014) (11pp).
58.Wang, J., Li, W., Ban, L., Du, W., Feng, X., and Liu, B.: A paper-based device with an adjustable time controller for the rapid determination of tumour biomarkers. Sens. Actuators B 254, 855–862 (2018).
59.Gao, W., Emaminejad, S., Nyein, H., Challa, S., Chen, K., Peck, A., Fahad, H., Ota, H., Shiraki, H., Kiriya, D., Lien, D., Brooks, G., Davis, R., and Javey, A.: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).
60.Emaminejada, S., Gao, W., Wub, E., Davies, Z.A., Nyein, H., Challaa, S., Ryan, S.P., Fahad, H., Chen, K., Shahpar, Z., Talebia, S., Millaf, C., Javey, A., and Davies, R.W.: Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. 114, 4625–4360 (2017).
61.Martín, A., Kim, J., Kurniawan, J.F., Sempionatto, J.R., Moreto, J.R., Tang, G., Campbell, A.S., Shin, A., Lee, M., Liu, X., and Wang, J.: Epidermal microfluidic electrochemical detection system: sweat sampling and metabolite detection. ACS Sens. 2, 1860–1868 (2017).
62.Parrilla, M., Ferr, J., Guinovart, T., and Andrade, F.: Wearable potentiometric sensors based on commercial carbon fibres for monitoring sodium in sweat. Electroanalysis 28, 1267–1275 (2016).
63.Matzeu, G., Quigley, C.O., McNamara, E., Zuliani, C., Fay, C., Glennon, T., and Diamond, D.: An integrated sensing and wireless communications platform for sensing sodium in sweat. Anal. Methods 8, 64–71 (2016).
64.Rim, Y., Bae, S., Chen, H., Yang, J.L., Kim, J., Andrews, A.M., Weiss, P.S., Yang, Y., and Tseng, H.: Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano 9, 12174–12181 (2015).
65.Liao, C., Mak, C., Zhang, M., Chan, H.W., and Yan, F.: Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv. Mater. 27, 676–681 (2015).
66.Anastasova, S., Crewther, B., Bembnowicz, P., Curto, V., Ip, H., Rosa, B., and Yang, G.-Z.: A wearable multisensing patch for continuous sweat sensing. Biosens. Bioelectron. 93, 139–145 (2017).
67.Sekine, Y., Kim, S., Zhang, Y., Bandodkar, A., Xu, S., Choi, J., Irie, M., Ray, T., Kohli, P., Kozai, N., Sugita, T., Wu, Y., Lee, K., Lee, K., Ghaffarid, R., and Rogers, J.A.: A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab. Chip (2018). Advance Article on June 29, DOI: 10.1039/C8LC00530C.
68.Bhide, A., Muthukumar, S., Saini, A., and Prasad, S.: Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep. 8, 6507 (2018).
69.Imani, S., Bandodkar, A., Vinu Mohan, A., Kumar, R., Yu, S., Wang, J., and Mercier, P.: A wearable chemical-electrophysiological hybrid biosensing system for realtime health and fitness monitoring. Nat. Commun. 7, 11650 (2016).
70.Bansoda, B., Kumarb, T., Thakurc, R., Ranac, S., and Singh, I.: A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 94, 443–455 (2017).
71.March, G., Nguyen, T., and Piro, B.: Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015).
72.Zhao, G., Sheng, Y., Wang, H., and Liu, G.: A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry. Int. J. Electrochem. Sci. 11, 54–64 (2016).
73.Yantasee, W., Lin, Y., Hongsirikarn, K., Fryxell, G.E., Addleman, R., and Timchalk, C.: Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environ. Health Perspect. 115, 1683–1690 (2007).
74.Xuan, X., Hossain, F., and Park, J.: A fully integrated and miniaturized heavy-metal-detection sensor based on micro-patterned reduced graphene oxide. Sci. Rep. 6, 33125 (2016).
75.Schaefer, M., Schellenberg, M., Merle, U., Weiss, K.H., and Wilson, W.: Protein expression, copper excretion and sweat production in sweat glands of Wilsons disease patients and controls. BMC Gastroenterol. 8, 29–31 (2008).
76.Crew, A., Cowell, D., and Hart, J.P.: Development of an anodic stripping voltammetric assay, using a disposable mercury free screen printed carbon electrode for determination of Zinc in human sweat. Talanta 75, 1221–1226 (2008).
77.De Souza, A.P., Lima, A.S., Salles, M.O., Nascimento, A.N., and Bertotti, M.: The use of a gold disc microelectrode for the determination of copper in human sweat. Talanta 83, 167–170 (2010).
78.Kim, J., de Araujo, W.R., Samek, I.A., Bandodkar, A.J., Jia, W., Brunetti, B., Paixao, T., and Wang, J.: Wearable temporary tattoo sensor for real time trace metal monitoring in human sweat. Electrochem. Commun. 51, 41–45 (2015).
79.Goa, W., Nyein, H.Y., Shahpar, Z., Fahad, H.M., Chen, K., Emaminejad, S., Goa, Y., Tai, L., Ota, H., Wu, E., Bullock, J., Zeng, Y., Lein, D., and Javey, A.: Heavy metal monitoring of bodily fluids. ACS Sens. 1, 866–874 (2016).
80.Koh, A., Kang, D., Xue, Y., Lee, S., Pielak, R., Kim, J., Hwang, T., Min, S., Banks, A., Bastien, P., Manco, M., Wang, L, Ammann, K., Jang, K., Won, P., Han, S., Ghaffari, R., Paik, U., Slepian, M., Balooch, G., Huang, Y., and Rogers, J.A.: A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 165–185 (2016).
81.Baraket, A., Lee, M., Zine, N., Sigaud, M., Yaakoubi, N., Trivella, M., Zabala, M., Bausells, J., Jaffrezic-Renault, N., and Errachid, A.: Diazonium modified gold microelectrodes onto polyimide substrates for impedimetric cytokine detection with an integrated Ag/AgCl reference electrode. Sens. Actuators B 189, 165–172 (2013).
82.Garcia-Cruz, A., Lee, M., Zine, N., Sigaud, M., Bausells, J., and Errachid, A.: Poly(pyrrole) microwires fabrication process on flexible thermoplastic polymers: application as a biosensing material. Sens. Actuators B 221, 940–950 (2015).
83.Kamakoti, V., Selvam, A., Shanmugam, N., Muthukum, S., and Prasad, S.: Flexible molybdenum electrodes towards designing affinity based protein biosensors. Biosensors 6, 36 (2016).
84.Pei, H., Li, J., Lv, M., Wang, J., Gao, J., Lu, J., Li, Y., Huang, Q., Hu, J., and Fan, C.: A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 134, 13843–13849 (2012).
85.Chou, S., De, M., Luo, J., Rotello, M., Huang, J., and Dravid, V.: Nanoscale graphene oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing. J. Am. Chem. Soc. 134, 16725–16733 (2012).
86.Lin, P., Luo, X., Hsing, I., and Yan, F.: Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 23, 4035–4040 (2011).
87.Guo, X., Liu, J., Liu, F., She, F., Zheng, Q., Tang, H., Ma, M., and Yao, S.: Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sens. Actuators B 240, 1075–1082 (2017).
88.Castano, L. and Flatau, A.: Smart fabric sensors and e-textile technologies: a review. Smart Mater. Struct. 23, 053001 (2014) (pp27).
89.Ohmatex-Smart Textile Technology. Available at www.ohmatex.dk (accessed February 21, 2018). 90.Guinovart, T., Parilla, M., Crespo, G.A., Rius, F.X., and Andrade, F.J.: Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst 138, 5208–5215 (2013).
91.Choudhary, T., Rajamanickam, G., and Dendukuri, D.: Woven electrochemical fabric based test sensors: a new class of multiplexed electrochemical sensors. Lab. Chip 15, 2064–2072 (2015).
92.Coppede, N., Tarabella, G., Villani, M., Calestani, D., Lannotta, S., and Zappettini, A.: Human stress monitoring through an organic cotton-fiber biosensor. J. Mater.Chem. B 2, 5620 (2014).
93.Liu, X. and Lillehoj, P.B.: Embroidered electrochemical sensors for biomolecule detection. Lab. Chip 16, 2093–2098 (2016).
94.You, X. and Pak, J.J.: Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuators B 202, 1357–1365 (2014).
95.Chou, H., Nguyen, A., Chortos, A., To, J., Lu, C., Mei, J., Kurosawa, T., Bae, W., Tok, J., and Bao, Z.: A chameleon inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015).
96.Lee, S., Reuveny, A., Reeder, J., Lee, J., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y., Suo, Z., and Someya, T.: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472 (2016).
97.Amjadi, M., Kyung, K., Park, I., and Sitti, M.: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).
98.Yang, A., Li, Y., Yang, C., Fu, Y., Wang, N., Li, L., and Yan, F.: Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30, 1800051 (2018).
99.Baloach, Q., Tahira, A., Begum Mallah, A., Ishaq Abro, M., Uddin, S., Willander, M., and Ibupoto, Z.: A robust, enzyme-free glucose sensor based on lysine-assisted CuO nanostructures. Sensors 16, 1878 (2016).
100.Bai, Y., Yang, W., Sun, Y., and Sun, C.: Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens. Actuators B 134, 471–476 (2008).
101.Bell, C., Nammari, A., Uttamchandani, P., Rai, A., Shahand, P., and Moore, A.: Flexible electronics-compatible non-enzymatic glucose sensing via transparent CuO nanowire networks on PET films. Nanotechnology 28, 245502 (2017) (11pp).
102.Choi, D., Kim, J., Cutting, G.R., and Searson, P.: Wearable potentiometric chloride sweat sensor: the critical role of the salt bridge. Anal. Chem. 88, 12241–12247 (2016).
103.Turner, A.P.F.: Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184–3196 (2013).
104.de Planell-Saguer, M. and Celina Rodicio, M.: Analytical aspects of microRNA in diagnostics: a review. Anal. Chim. Acta 699, 134–152 (2011).
105.Dijkstra, S., Mulders, P.F.A., and Schalken, J.A.: Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin. Biochem. 47, 889–896 (2014).
106.Monbailliu, T., Goossens, J., and Hachimi-Idrissi, S.: Blood protein biomarkers as diagnostic tool for ischemic stroke: a systematic review. Biomark. Med. 11, 503–512 (2017).
110.Lee, H., Choi, T., Lee, Y., Cho, H., Ghaffari, R., Wang, L., Choi, H., Chung, T., Lu, N., Hyeon, T., Choi, S., and Kim, D.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).
111.Jia, W.: Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013).
112.Kim, J., Valdés-Ramírez, G., Bandodkar, A.J., Jia, W., Martinez, A.G., Ramírez, J., Mercier, P., and Wang, J.: Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632 (2014).
113.Malon, R., Chua, K.Y., Wicaksono, D.H., and Corcoles, E.: Cotton fabric based electrochemical device for lactate measurement in saliva. Analyst 139, 3009 (2014).
114.Liakat, S., Bors, K.A., Xu, L., Woods, C.M., Doyle, J., and Gmachl, C.F.: Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed. Opt. Express 5, 2397–2404 (2014).
115.Ozana, N., Beiderman, Y., Mico, V., Sanz, M., Garcia, X., Arnand, A., Baharam, J., Epstein, Y., and Zalevsky, Z.: Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level. Biomed. Opt. Express 5, 1926–1940 (2014).