Skip to main content Accessibility help
×
Home

Ferroelectric domain engineering of lithium niobate single crystal confined in glass

  • Keith Veenhuizen (a1), Sean McAnany (a2), Rama Vasudevan (a3), Daniel Nolan (a4), Bruce Aitken (a4), Stephen Jesse (a3), Sergei V. Kalinin (a3), Himanshu Jain (a2) and Volkmar Dierolf (a5)...

Abstract

Ferroelectric single-crystal-architecture-in-glass is a new class of metamaterials that would enable active integrated optics if the ferroelectric behavior is preserved within the confines of glass. We demonstrate using lithium niobate crystals fabricated in lithium niobosilicate glass by femtosecond laser irradiation that not only such behavior is preserved, the ferroelectric domains can be engineered with a DC bias. A piezoresponse force microscope is used to characterize the piezoelectric and ferroelectric behavior. The piezoresponse correlates with the orientation of the crystal lattice as expected for unconfined crystal, and a complex micro- and nano-scale ferroelectric domain structure of the as-grown crystals is revealed.

Copyright

Corresponding author

Address all correspondence to Keith Veenhuizen at veenhuiz@lvc.edu

References

Hide All
1.Miura, K., Qiu, J., Inouye, H., Mitsuyu, T., and Hirao, K.: Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329 (1997).
2.Choudhury, D., Macdonald, J.R., and Kar, A.K.: Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev. 8, 827 (2014).
3.Shimotsuma, Y., Kazansky, P., Qiu, J., and Hirao, K.: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003).
4.Komatsu, T. and Honma, T.: Laser patterning and characterization of optical active crystals in glasses. J. Asian Ceram. Soc. 1, 9 (2013).
5.Honma, T., Benino, Y., Fujiwara, T., Komatsu, T., and Sato, R.: Technique for writing of nonlinear optical single-crystal lines in glass. Appl. Phys. Lett. 83, 2796 (2003).
6.Honma, T., Benino, Y., Fujiwara, T., and Komatsu, T.: Transition metal atom heat processing for writing of crystal lines in glass. Appl. Phys. Lett. 88, 231105 (2006).
7.Miura, K., Qiu, J., Mitsuyu, T., and Hirao, K.: Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. Opt. Lett. 25, 408 (2000).
8.Stone, A., Jain, H., Dierolf, V., Sakakura, M., Shimotsuma, Y., Miura, K., Hirao, K., Lapointe, J., and Kashyap, R.: Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics. Sci. Rep. 5, 10391 (2015).
9.Cao, J., Mazerolles, L., Lancry, M., Brisset, F., and Poumellec, B.: Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure. J. Opt. Soc. Am. B 34, 160 (2017).
10.Veenhuizen, K., McAnany, S., Nolan, D., Aitken, B., Dierolf, V., and Jain, H.: Fabrication of graded index single crystal in glass. Sci. Rep. 7, 44327 (2017).
11.Weis, R.S. and Gaylord, T.K.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191 (1985).
12.Miller, R.C. and Savage, A.: Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3. Appl. Phys. Lett. 9, 169 (1966).
13.Neumayer, S.M., Ivanov, I.N., Manzo, M., Kholkin, A.L., Gallo, K., and Rodriguez, B.J.: Interface and thickness dependent domain switching and stability in Mg doped lithium niobate. J. Appl. Phys. 118, 224101 (2015).
14.Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyk, O.V., Eliseev, E.A., Kholkin, A.L., Shur, V.Ya, and Kalinin, S.V.: Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS Nano 9, 769 (2015).
15.Gruverman, A., Auciello, O., and Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101 (1998).
16.Gruverman, A., Wu, D., Fan, H.-J., Vrejoiu, I., Alexe, M., Harrison, R.J., and Scott, J.F.: Vortex ferroelectric domains. J. Phys.: Condens. Matter 20, 342201 (2008).
17.Balke, N., Choudhury, S., Jesse, S., Huijben, M., Chu, Y.H., Baddorf, A.P., Chen, L.Q., Ramesh, R., and Kalinin, S.V.: Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868 (2009).
18.Jia, C.-L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420 (2011).
19.McQuaid, R.G.P., McGilly, L.J., Sharma, P., Gruverman, A., and Gregg, J.M.: Mesoscale flux-closure domain formation in single-crystal BaTiO3. Nat. Commun. 2, 404 (2011).
20.Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Williams, D.B., and Gruverman, A.: Vector piezoresponse force microscopy. Microsc. Microanal. 12, 206 (2006).
21.Gupta, P., Jain, H., Williams, D.B., Kalinin, S.V., Shin, J., Jesse, S., and Baddorf, A.P.: Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy. Appl. Phys. Lett. 87, 172903 (2005).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed