Skip to main content Accessibility help

Fabrication of optically active fiber mats via melt electrospinning

  • John P. Murphy (a1) (a2), Molly C. Brockway (a1) (a2), Jessica M. Andriolo (a1) (a3), Nathan J. Sutton (a1) (a3) and Jack L. Skinner (a1) (a2) (a3)...


Melt electrospinning is a facile fabrication technique that can be utilized in the creation of microfibers without the use of solvent and with good control over feature placement. The available thermal energy of the melt electrospinning technique is often only utilized in the formation of the polymer melt but can also be used to thermodynamically drive chemical reactions. In this study, hybrid perovskite microcrystallites are synthesized in the polymer melt and electrospun to form composite microfibers. Unique hybrid perovskite microstructures were studied, elucidating mechanisms of formation at work in the polymer melt.


Corresponding author

Address all correspondence to John P. Murphy at


Hide All
1.Larrondo, L. and St. John Manley, R.: Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci. Polym. Phys. Ed. 19, 909 (1981). doi: 10.1002/pol.1981.180190601.
2.Lyons, J., Li, C., and Ko, F.: Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45, 7597 (2004). doi: 10.1016/j.polymer.2004.08.071
3.Brown, T.D., Dalton, P.D., and Hutmacher, D.W.: Direct writing by way of melt electrospinning. Adv. Mater. 23, 5651 (2011). doi: 10.1002/adma.201103482
4.Wunner, F.M., Willie, M.L., Noonan, T.G., Bas, O., Dalton, P.D., De-Juan-Pardo, E.M., and Hutmacher, D.W.: Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mater. 30, 1706570 (2018). doi: 10.1002/adma.201706570.
5.Zhang, S., Lanty, G., Lauret, J.S., Deleporte, E., Audebert, P., and Galmiche, L.: Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors. Acta Mater. 57, 3301 (2009). doi: 10.1016/j.actamat.2009.03.037.
6.Quarti, C., Mosconi, E., Ball, J.M., D'Innocenzo, V., Tao, C., Pathak, S., Snaith, H.J., Petrozza, A., and De Angelis, F.: Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155 (2016). doi: 10.1039/C5EE02925B
7.Ziang, X., Shifeng, L., Laixiang, Q., Shuping, P., Wei, W., Yu, Y., Li, Y., Zhijian, C., Shufeng, W., Honglin, D., Minghui, Y., and Qin, G.G.: Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt. Mater. Express 5, 29 (2015). doi: 10.1364/OME.5.000029
8.Tan, Z.-K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Prince, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bien, T., Snaith, H.J., and Friend, R.H.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014). doi: 10.1038/nnano.2014.149.
9.Bai, S., Yuan, Z., and Gao, F.: Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. J. Mater. Chem. C 4, 3898 (2016). doi: 10.1039/C5TC04116C.
10.Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., and Il Seok, S.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013). doi: 10.1021/nl400349b.
11.Niu, G., Guo, X., and Wang, L.: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970 (2015). doi: 10.1039/C4TA04994B.
12.Manser, J.S., Saidaminov, M.I., Christians, J.A., Bakr, O.M., and Kamat, P.V.: Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330 (2016). doi: 10.1021/acs.accounts.5b00455.
13.Yang, J., Siempelkamp, B.D., Liu, D., and Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015). doi: 10.1021/nn506864k.
14.Murphy, J.P., Andriolo, J.M., Ross, B.M., Wyss, G.F., Zander, N.E., and Skinner, J.L.: Organometallic Halide perovskite synthesis in polymer melt for improved stability in high humidity. MRS Adv. 1, 3207 (2016). doi: 10.1557/adv.2016.379.
15.Murphy, J.P., Ross, B.M., Andriolo, J.M., and Skinner, J.L.: Hybrid organic–inorganic perovskite composite fibers produced via melt electrospinning. J. Vac. Sci. Technol. B 34, 06KM01 (2016). doi: 10.1116/1.4966604.
16.Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., and Yang, S.: All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245 (2013). doi: 10.1039/c3nr00218g.
17.Dualeh, A., Gao, P., Il Seok, S., Nazeeruddin, M.K., and Grätzel, M.: Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160 (2014). doi: 10.1021/cm502468k.
18.Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N.P., and Cui, G.: Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chemie Int. Ed 54, 9705 (2015). doi: 10.1002/anie.201504379.
19.Murphy, J.P., Andriolo, J.M., Sutton, N.J., Brockway, M.C., and Skinner, J.L.: Coaxial hybrid perovskite fibers: synthesis and encapsulation in situ via electrospinning. J. Vac. Sci. Technol. B 35, 06G402 (2017). doi: 10.1116/1.4991724.

Fabrication of optically active fiber mats via melt electrospinning

  • John P. Murphy (a1) (a2), Molly C. Brockway (a1) (a2), Jessica M. Andriolo (a1) (a3), Nathan J. Sutton (a1) (a3) and Jack L. Skinner (a1) (a2) (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed