Skip to main content Accessibility help
×
Home

Europium(III)-induced water-soluble nano-aggregates of hyaluronic acid and chitosan: structure and fluorescence

  • Junlan Guo (a1), Jianguo Tang (a1), Jing Wang (a1), Sui Mao (a1), Haidong Li (a1), Yao Wang (a1), Jin Liu (a1), Jing Wang (a1), Yanxin Wang (a1), Linjun Huang (a1), Matt J. Kipper (a2) and Laurence A. Belfiore (a2)...

Abstract

This paper presents new water-soluble bio-polyelectrolyte-based nanoparticles, formed from lanthanide-induced polysaccharide aggregates (LIPAs). These new nano-aggregates are formed by coordinating a photoluminescent lanthanide–ligand complex to a single polyelectrolyte [i.e. polyanionic hyaluronic acid (HA)] or to two oppositely charged polyelectrolytes [i.e. HA and polycationic chitosan (CHI)]. We demonstrate that photoluminescent Eu3+–ligand complexes, which are dispersed homogeneously in aqueous solution by the association with water-soluble HA. The polysaccharide supermolecular assembly can be tuned to obtain nanoparticles of different sizes and surface charges. The preparation of stable and water-soluble lanthanide complexes via Eu3+–LIPAs opens opportunities for use of luminescent lanthanides in aqueous environments, for biosensing and bioimaging applications.

Copyright

Corresponding author

Address all correspondence to Jianguo Tang at jianguotangde@hotmail.com, Matt J. Kipper at Matthew.Kipper@ColoState.EDU, and Laurence A. Belfiore at Laurence.Belfiore@ColoState.EDU

References

Hide All
1.Dang, S., Yu, J.B., Wang, X.F., Guo, Z.Y., Sun, L.N., Deng, R.P., Feng, J., Fan, W.Q., and Zhang, H.J.: A study on the NIR-luminescence emitted from ternary lanthanide [Er(III), Nd(III) and Yb(III)] complexes containing fluorinated-ligand and 4,5-diazafluoren-9-one. J. Photochem. Photobiol. A 214, 152160 (2010).
2.Binnemans, K., Herck, K.V., and Görller-Walrand, C.: Influence of dipicolinate ligands on the spectroscopic properties of europium(III) in solution. Chem. Phys. Lett. 266, 297302 (1997).
3.Binnemans, K. and Görller-Walrand, C.: Crystal field analysis of EuCl3.6H2O1. J. Alloy. Compd. 250, 326331 (1997).
4.Ji, S., Wu, W., Song, P., Han, K., Wang, Z., Liu, S., Guo, H., and Zhao, J.: Tuning the luminescence lifetimes of ruthenium(II) polypyridine complexes and its application in luminescent oxygen sensing. J. Mater. Chem. 20, 19531963 (2010).
5.Liu, D., Wang, Z., Yu, H., and You, J.: Fluorescence properties of novel rare earth complexes using carboxyl-containing polyaryletherketones as macromolecular ligands. Eur. Polym. J. 45, 22602268 (2009).
6.Wang, W., Huang, Y., and Tang, N.: Synthesis and infrared and fluorescence spectra of rare earth complexes with a novel amide-based ligand. Spectrochim. Acta A 66, 1058 (2007).
7.Song, X.Q., Dong, W.K., Zhang, Y.J., and Liu, W.S: Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligands featuring salicylamide arms. J Biol. Chem. Lumin. 25, 328335 (2010).
8.Yang, T., and Feng, J.: Preparation of novel lanthanide complexes with hindered amine via solid-state reaction and preliminary evaluation of their efficiency as light stabilizers. J. Appl. Polym. Sci. 117, 250258 (2010).
9.Binnemans, K.: Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 42834374 (2009).
10.Boissé, S., Rieger, J., Belal, K., Dicicco, A., Beaunier, P., Li, M.H., and Charleux, B.: Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem. Commun. 46, 1950 (2010).
11.Wang, H., Li, X., Fang, F., and Yang, Y.: Luminescence enhancement of europium(III) originating from self-assembled supramolecular hydrogels. Dalton Trans. 39, 72947300 (2010).
12.Fang, S.M., Wang, C., Hu, M., Wang, P.Y., Zhou, L.M., Gao, L.J., and Liu, C.S.: Preparation and characterization of a series of novel EuIII-complex-polyurethane acrylate materials based on mixed 6-hydroxy-1-naphthoate and 1,10-phenanthroline ligands. J. Appl. Polym. Sci. 125, 34043409 (2012).
13.Jha, P. and Chandra, B.P.: Survey of the literature on mechanoluminescence from 1605 to 2013. J. Biol. Chem. Lumin. 29, 977 (2014).
14.Tsuchida, E., Sou, K., Nakagawa, A., Sakai, H., Komatsu, T., and Kobayashi, K.: Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjugate Chem. 20, 1419 (2009).
15.Volpato, F.Z., Almodóvar, J., Erickson, K., Popat, K.C., Migliaresi, C., and Kipper, M.J.: Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomater. 8, 15511559 (2012).
16.Place, L.W., Sekyi, M., and Kipper, M.J.: Aggrecan-mimetic, glycosaminoglycan-containing nanoparticles for growth factor stabilization and delivery. Biomacromolecules 15, 680689 (2014).
17.Liu, X., Yuan, L., Li, D., Tang, Z., Wang, Y., Chen, G., Chen, H., and Brash, J. L.: Blood compatible materials: state of the art. J. Mater. Chem. B 2, 57185738 (2014).
18.Chanphai, P. and Tajmir-Riahi, H.A.: Chitosan nanoparticles conjugate with trypsin and trypsin inhibitor. Carbohyd. Polym. 144, 346352 (2016).
19.Rajamouli, B. and Sivakumar, V.: Effect of carbazole functionalization with a spacer moiety in the phenanthroimidazole bipolar ligand in a europium(III) complex on its luminescence properties: combined experimental and theoretical study. New J. Chem. 41, 10171027 (2016).
20.Zhao, Y.C., Huang, L.J., Wang, Y.X., Tang, J.G., Wang, Y., Liu, J.X., Belfiore, L.A., and Kipper, M.J.: Synthesis of graphene oxide/rare-earth complex hybrid luminescent materials via π-π stacking and their pH-dependent luminescence. J. Alloy. Compd. 687, 95103 (2016).
21.Xu, Q., Tang, J., Wang, Y., Liu, J., Wang, X., Huang, Z., Huang, L., Wang, Y., Shen, W., and Belfiore, L.A.: Eu(3+)-induced aggregates of diblock copolymers and their photoluminescent property. J. Colloid Interf. Sci. 394, 630 (2013).
22.Opsteen, J.A., and Cornelissen, J.J.L.M.: Block copolymer vesicles. Pure Appl. Chem. 76, 13091319 (2004).
23.Gao, X., Zhu, S., Sheardown, H., and Brash, J.L.: Nanoscale patterning through self-assembly of hydrophilic block copolymers withone chain end constrained to surface. Polymer 51, 17711778 (2010).
24.Müller-Buschbaum, P., Hermsdorf, N., Roth, S.V., Wiedersich, J., Cunis, S., and Gehrke, R.: Comparative analysis of nanostructured diblock copolymer films ☆. Spectrochim. Acta B 59, 17891797. 2004.
25.Boddohi, S., Moore, N., Johnson, P.A., and Kipper, M.J.: Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10, 14021409 (2009).
26.Lapina, V.A., Pavich, T.A., and Pershukevich, P.P.: Spectroscopic properties of polycrystals of supramolecular europium complexes with bathophenanthroline. Opt. Spectrosc. 122, 219228 (2017).
27.Gupta, R., Parbhakar, S., Behera, J.N., and Hussain, F.: Sandwich type organic-inorganic hybrid of 3d–4f heterometallic containing germanotungstates [{Cu2 (1,10-phen)2 (μ-CH3 COO)2 }Ln(α-GeW 11 O 39)2] 11−: syntheses, crystal structures, magnetic and photoluminescence properties. Inorg. Chem. Commun. 74, 7278 (2016).
28.Wang, D., Tang, J., Wang, X., Shen, W., Wang, Y., Liu, J., Huang, L., Jiao, J., and Song, Y.: Morphology and luminescent properties of solid micelles based on Europium(III) complexes with diblock copolymers of methyl methylacrylate and acrylic acid. Ferroelectrics 486, 91105 (2015).
Type Description Title
UNKNOWN
Supplementary materials

Guo et al. supplementary material 1
Guo et al. supplementary material

 Unknown (19.7 MB)
19.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed