Skip to main content Accessibility help
×
Home

Enhancement of oxygen surface exchange on epitaxial La0.6Sr0.4Co0.2Fe0.8O3−δ thin films using advanced heterostructured oxide interface engineering

  • Dongkyu Lee (a1) (a2) (a3), Yueh-Lin Lee (a1) (a2), Xiao Renshaw Wang (a1) (a2), Dane Morgan (a4) and Yang Shao-Horn (a1) (a2) (a5)...

Abstract

Engineering of a novel heterostructured oxide interface was used to enhance the oxygen surface exchange kinetics of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF113) thin films. A single-layer decoration of mixed (LaSr)2CoOδ (LSC214) and La1−x Sr x CoO3−δ (LSC113) and a double-layer decoration of stacked LSC214 and LSC113 grown on the LSCF113 markedly enhanced the surface exchange coefficients of the LSCF113 by up to ~1.5 orders of magnitude relative to the undecorated LSCF113. It is hypothesized that two different types of surface decorations can enable Sr segregation at the interface and surfaces of LSC113 and LSC214, leading to enhancement of the oxygen surface exchange kinetics of decorated LSCF113.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Enhancement of oxygen surface exchange on epitaxial La0.6Sr0.4Co0.2Fe0.8O3−δ thin films using advanced heterostructured oxide interface engineering
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Enhancement of oxygen surface exchange on epitaxial La0.6Sr0.4Co0.2Fe0.8O3−δ thin films using advanced heterostructured oxide interface engineering
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Enhancement of oxygen surface exchange on epitaxial La0.6Sr0.4Co0.2Fe0.8O3−δ thin films using advanced heterostructured oxide interface engineering
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to Yang Shao-Horn at shaohorn@mit.edu

References

Hide All
1. Shao, Z.P. and Haile, S.M.: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170 (2004).
2. Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).
3. da Conceicao, L., Silva, C.R.B., Ribeiro, N.F.P., and Souza, M.: Influence of the synthesis method on the porosity, microstructure and electrical properties of La0.7Sr0.3MnO3 cathode materials. Mater. Charact. 60, 1417 (2009).
4. Endo, A., Ihara, M., Komiyama, H., and Yamada, K.: Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes. Solid State Ion. 86–88, 1191 (1996).
5. Ioroi, T., Hara, T., Uchimoto, Y., Ogumi, Z., and Takehara, Z.: Preparation of perovskite-type La1−xSrxMnO3 films by vapor-phase processes and their electrochemical properties. J. Electrochem. Soc. 144, 1362 (1997).
6. Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791 (2004).
7. Wang, S., Katsuki, M., Dokiya, M., and Hashimoto, T.: High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ phase structure and electrical conductivity. Solid State Ion. 159, 71 (2003).
8. Katsuki, M., Wang, S., Dokiya, M., and Hashimoto, T.: High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3−δ oxygen nonstoichiometry and chemical diffusion constant. Solid State Ion. 156, 453 (2003).
9. Liu, M.F., Ding, D., Blinn, K., Li, X.X., Nie, L.F., and Liu, M.: Enhanced performance of LSCF cathode through surface modification. Int. J. Hydrog. Energy 37, 8613 (2012).
10. Lou, X.Y., Wang, S.Z., Liu, Z., Yang, L., and Liu, M.L.: Improving La0.6Sr0.4Co0.2Fe0.8O3−δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3−δ coating. Solid State Ion. 180, 1285 (2009).
11. Lynch, M.E., Yang, L., Qin, W.T., Choi, J.J., Liu, M.F., Blinn, K., and Liu, M.L.: Enhancement of La0.6Sr0.4Co0.2Fe0.8O3−δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energy Environ. Sci. 4, 2249 (2011).
12. Zhu, X.B., Ding, D., Li, Y.Q., Lu, Z., Su, W.H., and Zhen, L.: Development of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode with an improved stability via La0.8Sr0.2MnO3-film impregnation. Int. J. Hydrog. Energy 38, 5375 (2013).
13. Crumlin, E.J., Ahn, S.J., Lee, D., Mutoro, E., Biegalski, M.D., Christen, H.M., and Shao-Horn, Y.: Oxygen electrocatalysis on epitaxial La0.6Sr0.4CoO3−δ perovskite thin films for solid oxide fuel cells. J. Electrochem. Soc. 159, F219 (2012).
14. Feng, Z., Crumlin, E.J., Hong, W.T., Lee, D., Mutoro, E., Biegalski, M.D., Zhou, H., Bluhm, H., Christen, H.M., and Shao-Horn, Y.: In situ studies of the temperature-dependent surface structure and chemistry of single-crystalline (001)-oriented La0.8Sr0.2CoO3−δ perovskite thin films. J. Phys. Chem. Lett. 4, 1512 (2013).
15. Gadre, M.J., Lee, Y.L., and Morgan, D.: Cation interdiffusion model for enhanced oxygen kinetics at oxide heterostructure interfaces. Phys. Chem. Chem. Phys. 14, 2606 (2012).
16. Lee, D., Lee, Y.-L., Grimaud, A., Hong, W.T., Biegalski, M.D., Morgan, D., and Shao-Horn, Y.: Enhanced oxygen surface exchange kinetics and stability on epitaxial La0.8Sr0.2CoO3−δ thin films by La0.8Sr0.2MnO3−δ decoration. J. Phys. Chem. C 118, 14326 (2014).
17. Lee, D., Lee, Y.-L., Hong, W.T., Biegalski, M.D., Morgan, D., and Shao-Horn, Y.: Oxygen surface exchange kinetics and stability of (La,Sr)2CoO4±δ/La1−xSrxMO3−δ (M = Co and Fe) hetero-interfaces at intermediate temperatures. J. Mater. Chem. A 3, 2144 (2015).
18. Sase, M., Hermes, F., Yashiro, K., Sato, K., Mizusaki, J., Kawada, T., Sakai, N., and Yokokawa, H.: Enhancement of oxygen surface exchange at the hetero-interface of (La,Sr)CoO3/(La,Sr)(2)CoO4 with PLD-layered films. J. Electrochem. Soc. 155, B793 (2008).
19. Crumlin, E.J., Mutoro, E., Ahn, S.J., la O, G.J., Leonard, D.N., Borisevich, A., Biegalski, M.D., Christen, H.M., and Shao-Horn, Y.: Oxygen reduction kinetics enhancement on a heterostructured oxide surface for solid oxide fuel cells. J. Phys. Chem. Lett. 1, 3149 (2010).
20. Feng, Z.X., Yacoby, Y., Gadre, M.J., Lee, Y.L., Hong, W.T., Zhou, H., Biegalski, M.D., Christen, H.M., Adler, S.B., Morgan, D., and Shao-Horn, Y.: anomalous interface and surface strontium segregation in (La1−y Sr y )2CoO4±δ/La1−x Sr x CoO3−δ heterostructured thin films. J. Phys. Chem. Lett. 5, 1027 (2014).
21. Nitadori, T., Muramatsu, M., and Misono, M.: Valence control, reactivity of oxygen, and catalytic activity of lanthanum strontium cobalt oxide (La2−x Sr x CoO4). Chem. Mater. 1, 215 (1989).
22. Sase, M., Hermes, F., Nakamura, T., Yashiro, K., Sato, K., Mizusaki, J., Kawada, T., Sakai, N., Yamaji, K., Horita, T., and Yokokawa, H.: Promotion of oxygen surface reaction at the hetero-interface of (La,Sr)CoO(3)/(La,Sr)(2)CoO(4) . In Solid Oxide Fuel Cells 10, edited by Eguchi, K., Singhai, S.C., Yokokawa, H., and Mizusaki, H. (Electrochemical Society Inc, Pennington, 2007), pp. 1055.
23. Shinomori, S., Kawasaki, M., and Tokura, Y.: Orientation-controlled epitaxy and anisotropic properties of La2−xSrxNiO4 with 0.5 ≤ x ≤ 1.5 covering the insulator-metal transition. Appl. Phys. Lett. 80, 574 (2002).
24. Lee, D., Grimaud, A., Crumlin, E.J., Mezghani, K., Habib, M.A., Feng, Z.X., Hong, W.T., Biegalski, M.D., Christen, H.M., and Shao-Horn, Y.: Strain influence on the oxygen electrocatalysis of the (100)-oriented epitaxial La2NiO4+δ thin films at elevated temperatures. J. Phys. Chem. C 117, 18789 (2013).
25. Lee, D., Lee, Y.-L., Grimaud, A., Hong, W.T., Biegalski, M.D., Morgan, D., and Shao-Horn, Y.: Strontium influence on the oxygen electrocatalysis of La2−x Sr x NiO4±δ (0.0≤x Sr≤1.0) thin films. J. Mater. Chem. A 2, 6480 (2014).
26. James, M., Tedesco, A., Cassidy, D., Colella, M., and Smythe, P.J.: The phase diagram and crystal chemistry of strontium-doped rare earth cobaltates: Ln(2−x)Sr(x)CoO(4+δ) (Ln=La-Dy). J. Alloys Compd. 419, 201 (2006).
27. Tai, L.W., Nasrallah, M.M., Anderson, H.U., Sparlin, D.M., and Sehlin, S.R.: Structure and electricial-properties of La1−x Sr x Co1−y Fe y O3−δ. 1. The system La0.8Sr0.2Co1−y Fe y O3 . Solid State Ion. 76, 259 (1995).
28. van Doorn, R.H.E., and Burggraaf, A.J.: Structural aspects of the ionic conductivity of La1−x Sr x CoO3−δ . Solid State Ion. 128, 65 (2000).
29. Steele, B.C.H. and Bae, J.M.: Properties of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes—II. Role of oxygen exchange and diffusion. Solid State Ion. 106, 255 (1998).
30. Lee, Y.L., Kleis, J., Rossmeisl, J., Shao-Horn, Y., and Morgan, D.: Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966 (2011).
Type Description Title
PDF
Supplementary materials

Lee supplementary material
Lee supplementary material 1

 PDF (3.1 MB)
3.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed