Skip to main content Accessibility help
×
Home

Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications

  • Leslie J. Lyons (a1), Scott Beecher (a2), Evan Cunningham (a1), Tom Derrah (a1), Shengyi Su (a1), Junmian Zhu (a1), Monica Usrey (a3), Adrián Peña-Hueso (a3), Tobias Johnson (a3) and Robert West (a3)...

Abstract

The authors report on 7Li, 19F, and 1H pulsed field gradient NMR measurements of 26 organosilyl nitrile solvent-based electrolytes of either lithium bis(trifluorosulfonyl)imide (LiTFSI) or lithium hexafluorophosphate. Lithium transport numbers (as high as 0.50) were measured and are highest in the LiTFSI electrolytes. The authors also report on solvent blend electrolytes of fluoroorganosilyl (FOS) nitrile solvent mixed with ethylene carbonate (EC) and diethyl carbonate. Solvent diffusion measurements on an electrolyte with 6% FOS suggest both the FOS and EC solvate the lithium cation. By comparing lithium transport and transference numbers, the authors find less ion pairing in FOS nitrile carbonate blend electrolytes and difluoroorganosilyl nitrile electrolytes.

Copyright

Corresponding author

Address all correspondence to Leslie J. Lyons at lyons@grinnell.edu

References

Hide All
1.Scrosati, B., Lithium batteries: from early stages to the future. In Lithium Batteries: Advanced Technologies and Applications, edited by Abraham, K. M., van Schalkwijk, W., and Hassoun, J. (Wiley, New Jersey, 2013) Chapter 2, pp. 2138.10.1002/9781118615515.ch2
2.Aurbach, D. and Schecter, A., Advanced liquid electrolytes. In Lithium Batteries: Science and Technology, edited by Nazri, G. A., and Pistoia, G. (Springer, New York, 2003) Chapter 18, pp. 530573.
3.Rossi, N.A.A. and West, R.: Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym. Int. 58, 267272 (2009).
4.Flashpoint of diethyl carbonate is tabulated in https://www.sigmaaldrich.com/catalog/product/aldrich/d91551?lang=en&region=US (accessed May 6, 2019).
5.Peña Hueso, J.A., Osmalov, D., Dong, J., Usrey, M., Pollina, M., and West, R.C.: Nitrile-substituted silanes and electrolyte compositions and electrochemical devices containing them. US Patent 0356735A1 (2014).
6.Guillot, S.L., Peña Hueso, A., Usrey, M.L., and Hamers, R.J.: Thermal and hydrolytic decomposition mechanisms of organosilicon electrolytes with enhanced thermal stability for lithium-ion batteries. J. Electrochem. Soc. 164, A1907A1917 (2017).
7.Chen, X., Usrey, M., Peña Hueso, A., West, R., and Hamers, R.J.: Thermal and electrochemical stability of organosililcon electrolytes for lithium-ion batteries. J. Power Sources 241, 311319 (2013).
8.Ma, Q., and Mandal, B.K.: Highly conductive electrolytes derived from nitrile solvents. J. Electrochem. Soc. 162, A1276A1281 (2015).
9.Xie, B., Mai, Y., Wang, J., Luo, H., Yan, X., and Zhang, L.: Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries. Ionics 21, 909915 (2015).
10.Farhat, D., Ghamouss, F., Maiback, J., Edstrom, K., and Lemordant, D.: Adiponitrile-lithium bis(trimethylsulfonyl)imide solutions as alkyl carbonate-free electrolytes for Li4Ti5O12 (LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li-ion batteries. ChemPhysChem 18, 113 (2017).
11.Rohan, R., Kuo, T.-C., Lin, J.-H., Hsu, Y.-C., Li, C.-C., and Lee, J.-T.: Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles. J. Phys. Chem. C 120, 64506458 (2016).
12.Pohl, B., Grunebaum, M., Drews, M., Passerini, S., Winter, M., and Wiemhofer, H.-D.: Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries. Electrochim. Acta 180, 795800 (2015).
13.Pohl, B. and Wiemhofer, H.-D.: Highly thermal and electrochemical stable dinitrile disiloxane as co-solvent for use in lithium-ion batteries. J. Electrochem. Soc. 162, A460A464 (2015).
14.Horowitz, Y., Ben-Barak, I., Schneier, D., Goor-Dar, M., Kasnatscheew, J., Meister, P., Grunebaum, M., Wiemhofer, H.-D., Winter, M., Golodnitsky, D., and Peled, E.: Study of the formation of a solid electrolyte interphase (SEI) on a silicon nanowire anode in liquid disiloxane electrolyte with nitrile end groups for lithium-ion batteries. Batteries Supercaps 2, 213222 (2019).
15.Wang, J., Yong, T., Yang, J., Ouyand, C., and Zhang, L.: Organosilicon functionalized glycerol carbonates as electrolytes for lithium-ion batteries. RSC Adv. 5, 1766017666 (2015).
16.Phillip, M., Bhandary, R., Groche, F.J., Schonhoff, M., and Rieger, B.: Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes. Electrochim. Acta 173, 687697 (2015).
17.Peña Hueso, J.A., Dong, J., Pollina, M., Usrey, M.L., Hamers, R.J., West, R.C., and Osmalov, D.: Halogenated organosilicon electrolytes, methods of using them, and electrochemical devices containing them. US Patent No. 0270573A1 (2015).
18.Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 1150411593 (2014).
19.Lyons, L.J., Peña Hueso, A., Johnson, T., and West, R.: Silyl and silyl/carbonate blend electrolytes for lithium-ion battery applications. ECS Trans. 73, 281288 (2016).
20.Ueda, S., Yamada, K., Konno, K., Hoshino, M., Kojima, K., and Tanaka, N.: A theoretical study of growth of solid-electrolyte-interphase films in lithium-ion batteries with organosilicon compounds. MRS Adv. 4, 801806 (2019).
21.Annat, G., MacFarlane, D.R., and Forsyth, M.: Transport properties in ionic liquids and ionic liquid mixtures: the challenges of NMR pulsed field gradient diffusion measurements. J. Phys. Chem. B 111, 90189024 (2007).
22.MacFarlane, D.R., Forsyth, M., Izgorodina, E.I., Abbott, A.P., Annat, G., and Fraser, K.: On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 49624967 (2009).
23.Lyons, L., Derrah, T., Sharpe, S., Yoon, S., Beecher, S., Usrey, M., Peña Hueso, A., Johnson, T., and West, R.: Enhancing ionic conductivity with fluorination in organosilyl solvents for LIB electrolytes. MRS Commun. (2019).
24.Hayamizu, K.: Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate + diethyl carbonate binary solutions of LiPF6 studied by NMR. J Chem. Eng. Data 57, 20122017 (2012).
25.Zhu, J., Lyons, L.J., and Hernandez, H.: Computational studies of LiPF6 salt dissociation in organosilicon nitrile electrolytes. In 256th American Chemical Society National Meeting; COMP, Poster, Boston, MA, August 22, 2018.
26.Stolwijk, N.A., Kosters, J., Wiencierz, M., and Schonhoff, M.: On the extraction of ion association data and transference numbers from ionic diffusivity and conductivity data in polymer electrolytes. Electrochim. Acta 102, 451458 (2013).
27.Krachkovskiy, S.A., Bezak, J.D., Fraser, S., Halalay, I.C., and Goward, G.R.: Determination of mass transfer parameters and ionic association of LiPF6: organic carbonates solutions. J. Electrochem. Soc. 164, A912A916 (2017).
28.Hou, J., Zhang, Z., and Madsen, L.A.: Cation/anion associations in ionic liquids modulated by hydration and ionic medium. J. Phys. Chem. B 115, 45764582 (2011).
29.Duluard, S., Grondin, J., Bruneel, J.-L., Pianet, I., Grelard, A., Campet, G., Delville, M.-H., and Lessegues, J.-C.: Lithium solvation and diffusion in the 1-butyl-3-methylimidazollium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc. 39, 627632 (2008).
Type Description Title
PDF
Supplementary materials

Lyons et al. supplementary material
Lyons et al. supplementary material

 PDF (388 KB)
388 KB

Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications

  • Leslie J. Lyons (a1), Scott Beecher (a2), Evan Cunningham (a1), Tom Derrah (a1), Shengyi Su (a1), Junmian Zhu (a1), Monica Usrey (a3), Adrián Peña-Hueso (a3), Tobias Johnson (a3) and Robert West (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed