Skip to main content Accessibility help
×
Home

Engineered living conductive biofilms as functional materials

  • Lina J. Bird (a1), Elizabeth L. Onderko (a1), Daniel A. Phillips (a2), Rebecca L. Mickol (a2), Anthony P. Malanoski (a3), Matthew D. Yates (a3), Brian J. Eddie (a3) and Sarah M. Glaven (a3)...

Abstract

Natural living conductive biofilms transport electrons between electrodes and cells, as well as among cells fixed within the film, catalyzing an array of reactions from acetate oxidation to CO2 reduction. Synthetic biology offers tools to modify or improve electron transport through biofilms, creating a new class of engineered living conductive materials. Engineered living conductive materials could be used in a range of applications for which traditional conducting polymers are not appropriate, including improved catalytic coatings for microbial fuel-cell electrodes, self-powered sensors for austere environments, and next-generation living components of bioelectronic devices that interact with the human microbiome.

Copyright

Corresponding author

Address all correspondence to Sarah M. Glaven at sarah.glaven@nrl.navy.mil

References

Hide All
1.Flemming, H.C. and Wingender, J.: The biofilm matrix. Nat. Rev. Microbiol. 8, 623 (2010).
2.Yates, M., Strycharz-Glaven, S., Golden, J., Roy, J., Tsoi, S., Erickson, J., El-Naggar, M., Calabrese Barton, S., and Tender, L.: Characterizing electron transport through living biofilms. J. Vis. Exp. 136 (2018).
3.Snider, R.M., Strycharz-Glaven, S.M., Tsoi, S.D., Erickson, J.S., and Tender, L.M.: Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl. Acad. Sci. USA 109, 15467 (2012).10.1073/pnas.1209829109
4.Joshi, S., Cook, E., and Mannoor, M.S.: Bacterial Nanobionics via 3D printing. Nano Lett. 12, 7448 (2018).10.1021/acs.nanolett.8b02642
5.Zhou, A.Y., Baruch, M., Ajo-Franklin, C.M., and Maharbiz, M.M.: A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS ONE 12, e0184994 (2017).
6.Semiconductor Research Corporation: 2018 Semiconductor Synthetic Biology Roadmap, Zhirnov, V.V., ed. Available at https://www.src.org/library/publication/p095387/p095387.pdf (accessed March 1, 2019).
7.Potter, M.C.: Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. London. Series B 84, 260 (1911).10.1098/rspb.1911.0073
8.Tender, L.M., Reimers, C.E., Stecher, H.A. III, Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., and Lovley, D.R.: Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20, 821 (2002).10.1038/nbt716
9.Eddie, B.J., Wang, Z., Malanoski, A.P., Hall, R.J., Oh, S.D., Heiner, C., Lin, B., and Strycharz-Glaven, S.M.: ‘Candidatus Tenderia electrophaga’, an uncultivated electroautotroph from a biocathode enrichment. Int. J. Syst. Evol. Microbiol. 66, 2178 (2016).
10.Coursolle, D., Baron, D.B., Bond, D.R., and Gralnick, J.A.: The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192, 467 (2010).
11.Jiménez Otero, F., Chan, C.H., and Bond, D.R.: Identification of different putative outer membrane electron conduits necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide, or electrode reduction by Geobacter sulfurreducens. J. Bacteriol. 200, e0034718 (2018).
12.Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S., Shrestha, P.M., Flanagan, K.A., Aklujkar, M., Butler, J.E., Giloteaux, L., Rotaru, A.E., Holmes, D.E., Franks, A.E., Orellana, R., Risso, C., and Nevin, K.P.: Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv. Microb. Physiol. 59, 1 (2011).10.1016/B978-0-12-387661-4.00004-5
13.Stephen, C.S., LaBelle, E.V., Brantley, S.L., and Bond, D.R.: Abundance of the multiheme c-type cytochrome OmcB increases in outer biofilm layers of electrode-grown Geobacter sulfurreducens. PLoS ONE 9, e104336 (2014).
14.Leang, C., Qian, X., Mester, T., and Lovley, D.R.: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl. Environ. Microbiol. 76, 4080 (2010).
15.Lebedev, N., Strycharz-Glaven, S.M., and Tender, L.M.: Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms. ChemPhysChem 15, 320 (2014).
16.Yates, M.D., Golden, J.P., Roy, J., Strycharz-Glaven, S.M., Tsoi, S., Erickson, J.S., El-Naggar, M.Y., Calabrese Barton, S., and Tender, L.M.: Thermally activated long range electron transport in living biofilms. Phys. Chem. Chem. Phys. 17, 32564 (2015).
17.Yates, M.D., Strycharz-Glaven, S.M., Golden, J.P., Roy, J., Tsoi, S., Erickson, J.S., El-Naggar, M.Y., Barton, S.C., and Tender, L.M.: Measuring conductivity of living Geobacter sulfurreducens biofilms. Nat. Nanotechnol. 11, 910 (2016).
18.Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H., and El-Naggar, M.Y.: Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 111, 12883 (2014).
19.Subramanian, P., Pirbadian, S., El-Naggar, M.Y., and Jensen, G.J.: Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc. Natl. Acad. Sci. USA 115, E3246 (2018).
20.Xu, S., Barrozo, A., Tender, L.M., Krylov, A.I., and El-Naggar, M.Y.: Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 Cells. J. Am. Chem. Soc. 140, 10085 (2018).
21.Kotloski, N.J. and Gralnick, J.A.: Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4, e0055312 (2013).
22.Li, C., Lesnik, K.L., Fan, Y., and Liu, H.: Redox conductivity of current-producing mixed species biofilms. PLoS ONE 11, e0155247 (2016).
23.Lovley, D.R.: Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep. 3, 27 (2011).
24.Rabaey, K. and Rozendal, R.A.: Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706 (2010).
25.Deutzmann, J.S., Sahin, M., and Spormann, A.M.: Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6, e0049615 (2015).
26.Summers, Z.M., Gralnick, J.A., and Bond, D.R.: Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. MBio 4, e00420 (2013).
27.Wang, Z., Leary, D.H., Malanoski, A.P., Li, R.W., Hervey, W.J.T., Eddie, B.J., Tender, G.S., Yanosky, S.G., Vora, G.J., Tender, L.M., Lin, B., and Strycharz-Glaven, S.M.: A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl. Environ. Microbiol. 81, 699 (2015).10.1128/AEM.02947-14
28.Leary, D.H., Hervey, W.J.T., Malanoski, A.P., Wang, Z., Eddie, B.J., Tender, G.S., Vora, G.J., Tender, L.M., Lin, B., and Strycharz-Glaven, S.M.: Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome. Proteomics 15, 3486 (2015).
29.Eddie, B.J., Wang, Z., Hervey, W.J.T., Leary, D.H., Malanoski, A.P., Tender, L.M., Lin, B., and Strycharz-Glaven, S.M.: Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by “Candidatus Tenderia electrophaga”. mSystems 2, e0000217 (2017).10.1128/mSystems.00002-17
30.Du, J., Catania, C., and Bazan, G.C.: Modification of abiotic–biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem. Mater. 26, 686 (2013).
31.Nakamura, R., Kai, F., Okamoto, A., Newton, G.J., and Hashimoto, K.: Self-constructed electrically conductive bacterial networks. Angew. Chem. 121, 516 (2009).
32.Zhao, C.-E., Gai, P., Song, R., Chen, Y., Zhang, J., and Zhu, J.-J.: Nanostructured material-based biofuel cells: recent advances and future prospects. Chem. Soc. Rev. 46, 1545 (2017).
33.Kouzuma, A., Oba, H., Tajima, N., Hashimoto, K., and Watanabe, K.: Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression. BMC Microbiol. 14, 190 (2014).
34.Liu, T., Yu, Y.Y., Deng, X.P., Ng, C.K., Cao, B., Wang, J.Y., Rice, S.A., Kjelleberg, S., and Song, H.: Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol. Bioeng. 112, 2051 (2015).
35.Kane, A.L., Bond, D.R., and Gralnick, J.A.: Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth. Biol. 2, 93 (2013).
36.Lienemann, M., TerAvest, M.A., Pitkanen, J.P., Stuns, I., Penttila, M., Ajo-Franklin, C.M., and Jantti, J.: Towards patterned bioelectronics: facilitated immobilization of exoelectrogenic Escherichia coli with heterologous pili. Microb. Biotechnol. 11, 1184 (2018).
37.Liu, X., Shi, L., and Gu, J.-D.: Microbial electrocatalysis: redox mediators responsible for extracellular electron transfer. Biotechnol. Adv. 36, 1815 (2018).
38.Yates, M.D., Ma, L., Sack, J., Golden, J.P., Strycharz-Glaven, S.M., Yates, S.R., and Tender, L.M.: Microbial electrochemical energy storage and recovery in a combined electrotrophic and electrogenic biofilm. Environ. Sci. Technol. Lett. 4, 374 (2017).
39.Yu, L., Duan, J., Zhao, W., Huang, Y., and Hou, B.: Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode. Electrochim. Acta 56, 9041 (2011).
40.Agostino, V. and Rosenbaum, M.: Sulfate-reducing electroautotrophs and their applications in bioelectrochemical systems. Front. Energy Res. 6, 55 (2018).
41.Gong, Y., Ebrahim, A., Feist, A.M., Embree, M., Zhang, T., Lovley, D., and Zengler, K.: Sulfide-driven microbial electrosynthesis. Environ. Sci. Technol. 47, 568 (2013).
42.Xiao, Y., Zhang, E., Zhang, J., Dai, Y., Yang, Z., Christensen, H.E.M., Ulstrup, J., and Zhao, F.: Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci. Adv. 3, e1700623 (2017).
43.Rollefson, J.B., Stephen, C.S., Tien, M., and Bond, D.R.: Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J. Bacteriol. 193, 1023 (2011).
44.Wittig, I., Carrozzo, R., Santorelli, F.M., and Schagger, H.: Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta 1757, 1066 (2006).
45.Rexroth, S., Mullineaux, C.W., Ellinger, D., Sendtko, E., Rogner, M., and Koenig, F.: The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. Plant Cell. 23, 2379 (2011).10.1105/tpc.111.085779
46.Kirchhoff, H.: Molecular crowding and order in photosynthetic membranes. Trends Plant Sci. 13, 201 (2008).
47.Frey, T.G. and Mannella, C.A.: The internal structure of mitochondria. Trends Biochem. Sci. 25, 319 (2000).
48.Kirchhoff, H.: Diffusion of molecules and macromolecules in thylakoid membranes. Biochim. Biophys. Acta 1837, 495 (2014).
49.Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R., Corrado, M., Cipolat, S., Costa, V., Casarin, A., Gomes, L.C., Perales-Clemente, E., Salviati, L., Fernandez-Silva, P., Enriquez, J.A., and Scorrano, L.: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160 (2013).
50.Eaktasang, N., Kang, C.S., Lim, H., Kwean, O.S., Cho, S., Kim, Y., and Kim, H.S.: Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell. Bioresour. Technol. 210, 61 (2016).
51.Meyer, A.J., Segall-Shapiro, T.H., Glassey, E., Zhang, J., and Voigt, C.A.: Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 2, 196 (2018).
52.Hartshorne, R.S., Reardon, C.L., Ross, D., Nuester, J., Clarke, T.A., Gates, A.J., Mills, P.C., Fredrickson, J.K., Zachara, J.M., and Shi, L.: Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 106, 22169 (2009).
53.TerAvest, M.A. and Ajo-Franklin, C.M.: Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol. Bioeng. 113, 687 (2016).
54.West, E.A., Jain, A., and Gralnick, J.A.: Engineering a native inducible expression system in Shewanella oneidensis to control extracellular electron transfer. ACS Synth. Biol. 6, 1627 (2017).
55.TerAvest, M.A., Zajdel, T.J., and Ajo-Franklin, C.M.: The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem 1, 1874 (2014).
56.Jensen, H.M., TerAvest, M.A., Kokish, M.G., and Ajo-Franklin, C.M.: CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 5, 679 (2016).
57.Goldbeck, C.P., Jensen, H.M., TerAvest, M.A., Beedle, N., Appling, Y., Hepler, M., Cambray, G., Mutalik, V., Angenent, L.T., and Ajo-Franklin, C.M.: Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2, 150 (2013).
58.Jensen, H.M., Albers, A.E., Malley, K.R., Londer, Y.Y., Cohen, B.E., Helms, B.A., Weigele, P., Groves, J.T., and Ajo-Franklin, C.M.: Engineering of a synthetic electron conduit in living cells. Proc. Natl. Acad. Sci. USA 107, 19213 (2010).
59.Liu, Y., Wang, Z., Liu, J., Levar, C., Edwards, M.J., Babauta, J.T., Kennedy, D.W., Shi, Z., Beyenal, H., Bond, D.R., Clarke, T.A., Butt, J.N., Richardson, D.J., Rosso, K.M., Zachara, J.M., Fredrickson, J.K., and Shi, L.: A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ. Microbiol. Rep. 6, 776 (2014).
60.Zacharoff, L.A., Morrone, D.J., and Bond, D.R.: Geobacter sulfurreducens extracellular multiheme cytochrome PgcA facilitates respiration to Fe(III) oxides but not electrodes. Front. Microbiol. 8, 2481 (2017).
61.Costa, N.L., Clarke, T.A., Philipp, L.-A., Gescher, J., Louro, R.O., and Paquete, C.M.: Electron transfer process in microbial electrochemical technologies: the role of cell-surface exposed conductive proteins. Bioresour. Technol. 255, 308 (2018).
62.Londer, Y.Y., Giuliani, S.E., Peppler, T., and Collart, F.R.: Addressing Shewanella oneidensis “cytochromome”: the first step towards high-throughput expression of cytochromes c. Protein Expression Purif. 62, 128 (2008).10.1016/j.pep.2008.06.014
63.Talla, E., Hedrich, S., Mangenot, S., Ji, B., Johnson, D.B., Barbe, V., and Bonnefoy, V.: Insights into the pathways of iron- and sulfur-oxidation, and biofilm formation from the chemolithotrophic acidophile Acidithiobacillus ferrivorans CF27. Res. Microbiol. 165, 753 (2014).
64.Chan, C., McAllister, S.M., Garber, A., Hallahan, B.J., and Rozovsky, S.: Fe oxidation by a fused cytochrome-porin common to diverse Fe-oxidizing bacteria. bioRxiv (2018), doi: 10.1101/228056.
65.Bose, A., Gardel, E.J., Vidoudez, C., Parra, E.A., and Girguis, P.R.: Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun. 5, 3391 (2014).
66.Barco, R.A., Emerson, D., Sylvan, J.B., Orcutt, B.N., Jacobson Meyers, M.E., Ramirez, G.A., Zhong, J.D., and Edwards, K.J.: New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl. Environ. Microbiol. 81, 5927 (2015).
67.Green, J. and Paget, M.S.: Bacterial redox sensors. Nat. Rev. Microbiol. 2, 954 (2004).
68.Ulrich, L.E., Koonin, E.V., and Zhulin, I.B.: One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 13, 52 (2005).
69.Ding, H.G., Hidalgo, E., and Demple, B.: The redox state of the 2Fe-2S clusters in SoxR protein regulates its activity as a transcription factor. J. Biol. Chem. 271, 33173 (1996).
70.Gu, M.Z. and Imlay, J.A.: The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79, 1136 (2011).
71.Tschirhart, T., Kim, E., McKay, R., Ueda, H., Wu, H.C., Pottash, A.E., Zargar, A., Negrete, A., Shiloach, J., Payne, G.F., and Bentley, W.E.: Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).
72.Lazazzera, B.A., Beinert, H., Khoroshilova, N., Kennedy, M.C., and Kiley, P.J.: DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J. Biol. Chem. 271, 2762 (1996).
73.Khoroshilova, N., Popescu, C., Munck, E., Beinert, H., and Kiley, P.J.: Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: 4Fe-4S to 2Fe-2S conversion with loss of biological activity. Proc. Natl. Acad. Sci. USA 94, 6087 (1997).10.1073/pnas.94.12.6087
74.Kwon, O., Georgellis, D., Lynch, A.S., Boyd, D., and Lin, E.C.C.: The ArcB sensor kinase of Escherichia coli: Genetic exploration of the transmembrane region. J. Bacteriol. 182, 2960 (2000).
75.Malpica, R., Franco, B., Rodriguez, C., Kwon, O., and Georgellis, D.: Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl. Acad. Sci. USA 101, 13318 (2004).
76.Georgellis, D., Kwon, O., and Lin, E.C.C.: Quinones as the redox signal for the Arc two-component system of bacteria. Science 292, 2314 (2001).
77.Pokkuluri, P.R., Pessanha, M., Londer, Y.Y., Wood, S.J., Duke, N.E.C., Wilton, R., Catarino, T., Saigueiro, C.A., and Schiffer, M.: Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens: implications for signal transduction. J. Mol. Biol. 377, 1498 (2008).
78.Freeman, T.L., Hong, Y.N., Schiavoni, K.H., Bandara, D.M.I., and Pletneva, E.V.: Changes in the heme ligation during folding of a Geobacter sulfurreducens sensor GSU0935. Dalton Trans. 41, 8022 (2012).
79.Levskaya, A., Chevalier, A.A., Tabor, J.J., Simpson, Z.B., Lavery, L.A., Levy, M., Davidson, E.A., Scouras, A., Ellington, A.D., Marcotte, E.M., and Voigt, C.A.: Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441 (2005).
80.Ganesh, I., Ravikumar, S., Lee, S.H., Park, S.J., and Hong, S.H.: Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system. J. Biotechnol. 168, 560 (2013).
81.Jiao, Y., Kappler, A., Croal, L.R., and Newman, D.K.: Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71, 4487 (2005).
82.Wang, H., Liu, X., Liu, S., Yu, Y., Lin, J., Lin, J., Pang, X., and Zhao, J.: Development of a markerless gene replacement system for Acidithiobacillus ferrooxidans and construction of a pfkB mutant. Appl. Environ. Microbiol. 78, 1826 (2012).
83.Brophy, J.A.N., Triassi, A.J., Adams, B.L., Renberg, R.L., Stratis-Cullum, D.N., Grossman, A.D., and Voigt, C.A.: Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nat. Microbiol. 3, 1043 (2018).
84.Sheth, R.U., Cabral, V., Chen, S.P., and Wang, H.H.: Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189 (2016).
85.Wright, O., Stan, G.B., and Ellis, T.: Building-in biosafety for synthetic biology. Microbiology 159, 1221 (2013).
86.Moser, F., Espah Borujeni, A., Ghodasara, A.N., Cameron, E., Park, Y., and Voigt, C.A.: Dynamic control of endogenous metabolism with combinatorial logic circuits. Mol. Syst. Biol. 14, e8605 (2018).
87.Bhatia, S.P., Smanski, M.J., Voigt, C.A., and Densmore, D.M.: Genetic design via combinatorial constraint specification. ACS Synth. Biol. 6, 2130 (2017).
88.Nielsen, A.A., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E.A., Ross, D., Densmore, D., and Voigt, C.A.: Genetic circuit design automation. Science 352, aac7341 (2016).
89.Kracke, F. and Krömer, J.O.: Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinf. 15, 410 (2014).
90.Bond, D.R., Strycharz-Glaven, S.M., Tender, L.M., and Torres, C.I.: On electron transport through Geobacter biofilms. ChemSusChem 5, 1099 (2012).
91.Izallalen, M., Mahadevan, R., Burgard, A., Postier, B., Didonato, R. Jr., Sun, J., Schilling, C.H., and Lovley, D.R.: Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab. Eng. 10, 267 (2008).
92.Kracke, F., Lai, B., Yu, S., and Krömer, J.O.: Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation—a chance for metabolic engineering. Metab. Eng. 45, 109 (2018).
93.Marshall, C.W., Ross, D.E., Handley, K.M., Weisenhorn, P.B., Edirisinghe, J.N., Henry, C.S., Gilbert, J.A., May, H.D., and Norman, R.S.: Metabolic reconstruction and modeling microbial electrosynthesis. Sci. Rep. 7, 8391 (2017).
94.Feist, A.M., Nagarajan, H., Rotaru, A.E., Tremblay, P.L., Zhang, T., Nevin, K.P., Lovley, D.R., and Zengler, K.: Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. PLoS Comput. Biol. 10, e1003575 (2014).
95.Popat, S.C. and Torres, C.I.: Critical transport rates that limit the performance of microbial electrochemistry technologies. Bioresour. Technol. 215, 265 (2016).
96.Gildemyn, S., Rozendal, R.A., and Rabaey, K.: A Gibbs free energy-based assessment of microbial electrocatalysis. Trends Biotechnol. 35, 393 (2017).
97.Biffinger, J., Ribbens, M., Ringeisen, B., Pietron, J., Finkel, S., and Nealson, K.: Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol. Bioeng. 102, 436 (2009).
98.Hou, H., Li, L., Ceylan, C.U., Haynes, A., Cope, J., Wilkinson, H.H., Erbay, C., de Figueiredo, P., and Han, A.: A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens. Lab Chip 12, 4151 (2012).
99.Zarabadi, M.P., Charette, S.J., and Greener, J.: Flow-based deacidification of Geobacter sulfurreducens biofilms depends on nutrient conditions: a microfluidic bioelectrochemical study. ChemElectroChem 5, 3645.
100.Yoon, J., Ahn, Y., and Schroder, U.: Parylene C-coated PDMS-based microfluidic microbial fuel cells with low oxygen permeability. J. Power Sources 398, 209 (2018).
101.Wang, Y., Noel, J.M., Velmurugan, J., Nogala, W., Mirkin, M.V., Lu, C., Guille Collignon, M., Lemaitre, F., and Amatore, C.: Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proc. Natl. Acad. Sci. USA 109, 11534 (2012).
102.Batchelor-McAuley, C., Ellison, J., Tschulik, K., Hurst, P.L., Boldt, R., and Compton, R.G.: In situ nanoparticle sizing with zeptomole sensitivity. Analyst 140, 5048 (2015).
103.El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H., and Gorby, Y.A.: Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 18127 (2010).
104.Avci, R., Davis, B.H., Wolfenden, M.L., Beech, I.B., Lucas, K., and Paul, D.: Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corros. Sci. 76, 267 (2013).
105.Golden, J., Yates, M.D., Halsted, M., and Tender, L.: Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms. Phys. Chem. Chem. Phys. 20, 25648 (2018).
106.Wang, Q., Jones, A.-A.D.I., Gralnick, J.A., Lin, L., and Buie, C.R.: Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci. Adv. 5, eaat5664 (2019).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed