Skip to main content Accessibility help
×
Home

Electrospun carbon nanofiberic coated with ambutan-like NiCo2O4 microspheres as electrode materials

  • Hua Chen (a1), Guohua Jiang (a1) (a2) (a3), Weijiang Yu (a1), Depeng Liu (a1), Yongkun Liu (a1), Lei Li (a1) and Qin Huang (a1)...

Abstract

The novel Three-dimensional rambutan-like NiCo2O4 microspheres have been successfully coated onto surface of carbon nanofibers (CNFs) to form NiCo2O4–CNFs hybrids. The composition and microstructure of NiCo2O4–CNFs were characterized by the field-emission scanning electronmicroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and x-ray diffractometer. The obtained NiCo2O4–CNFs exhibited a specific capacity of 160 mAh/g at 1 mA/cm2 in 2 M potassium hydroxide aqueous solution. The specific capacity gradually increases with the increasing of cycles; and after 3000 cycles, the specific capacity still can be remained over 90%.

Copyright

Corresponding author

Address all correspondence to Guohua Jiang at ghjiang_cn@zstu.edu.cn

References

Hide All
1. Chang, J., Sun, J., Xu, C., Xu, H., and Gao, L.: Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors. Nanoscale 4, 6786 (2012).
2. Zhang, G., and Lou, X.: General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25, 976 (2013).
3. Gong, Y., Yang, S., Zhan, L., Ma, L., Vajtai, R., and Ajayan, P.: Bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater. 24, 125 (2014).
4. Yu, M., Qiu, W., Wang, F., and Tong, Y.: Three dimensional architectures: design, assembly and application in electrochemical capacitors. J. Mater. Chem. A 3, 15792 (2015).
5. Wang, Y., Pan, A., Zhu, Q., Nie, Z., Zhang, Y., Tang, Y., Liang, S., and Cao, G.: Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. J. Power Sources 272, 107 (2014).
6. Alenezi, M.R., Henley, S.J., Emerson, N.G., and Silva, S.R.P.: From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235 (2014).
7. Wang, J., Xin, H.L., Zhu, J., Liu, S., Wu, Z., and Wang, D.: 3D hollow structured Co2FeO4/MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. J. Mater. Chem. A 3, 1601 (2015).
8. Yang, M. and Jin, X.: Facile synthesis of Zn2GeO4 nanorods toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Cent. South Univ. 7, 2837 (2014).
9. Jiang, G., Wei, Z., Chen, H., Du, X., Li, L., Liu, Y., Huang, Q., and Chen, W.: Preparation of novel carbon nanofibers with BiOBr and AgBr decorating for photocatalytic degradation of rhodamine B. RSC Adv. 5, 30433 (2015).
10. Jiang, G., Tang, B., Chen, H., Liu, Y., Li, L., Huang, Q., and Chen, W.: Controlled growth of hexagonal Zn2GeO4 nanorods on carbon fibers for photocatalytic oxidation of p-toluidine. RSC Adv. 2015 5, 25801 (2015).
11. Jiang, G., Li, X., Wei, Z., Jiang, T., Du, X., and Chen, W.: Growth of N-doped BiOBr nanosheets on carbon fibers for high efficient photocatalytic degradation of organic pollutants under visible light irradiation. Powder. Technol. 260, 84 (2014).
12. Chen, H., Jiang, G., Yu, W., Liu, D., Liu, Y., Li, L., Huang, Q., and Tong, Z.: Electrospun carbon nanofibers coated with urchinlike ZnCo2O4 nanosheets as a flexible electrode material. J. Mater. Chem. A 4, 5958 (2016).
13. Zhang, L. and Gong, H.: A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors. Sci. Rep. 5, 18108 (2015).
14. Yu, M., Ma, Y., Liu, J., and Li, S.: Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon 87, 98 (2015).
15. Wu, F., Ma, X., Feng, J., Qian, Y., and Xiong, S.: 3D Co3O4 and CoO@C wall arrays: morphology control, formation mechanism, and lithium-storage properties. J. Mater. Chem. A 2, 11597 (2014).
16. Mohamed, S.G., Chen, C.-J., Chen, C.K., Hu, S.-F., and Liu, R.-S.: High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces 6, 22701 (2014).
17. Wang, B., Li, X., Luo, B., Hao, L., Zhou, M., Zhang, X., Fan, Z., and Zhi, L.: Approaching the downsizing limit of silicon for surface-controlled lithium storage. Adv. Mater. 27, 1526 (2015).
18. Liu, X., Zhang, J., Si, W., Xi, L., Eichler, B., Yan, C., and Schmidt, O.G.: Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. ACS Nano 9, 1198 (2015).
19. Li, D., Ding, L., Wang, S., Cai, D., and Wang, H.: Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. J. Mater. Chem. A 2, 5625 (2014).
20. Guan, B., Guo, D., Hu, L., Zhang, G., Fu, T., Ren, W., Li, J., and Li, Q.: Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2, 16116 (2014).
21. Shen, L., Yu, L., Yu, X., Zhang, X., and Lou, X.W.: Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54, 1868 (2015).
22. Yuan, C., Li, J., Hou, L., Zhang, X., Shen, L., and Lou, X.W.: Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592 (2012).
23. Van, H., Lamiel, C., and Shim, J.-J.: Mesoporous 3D graphene@NiCo2O4 arrays on nickel foam as electrodes for high-performance supercapacitors. Mater. Lett. 170, 105 (2016).
24. Xiong, W., Gao, Y., Wu, X., Hu, X., Lan, D., Chen, Y., Pu, X., Zeng, Y., Su, J., and Zhu, Z.: Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl. Mater. Interfaces 6, 19416 (2014).
25. Li, L., Chai, S.-H., Dai, S., and Manthiram, A.: Advanced hybrid Li–air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630 (2014).
26. Li, B., Feng, J., Qian, Y., and Xiong, S.: Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J. Mater. Chem. A 3, 10336 (2015).
27. Pu, J., Wang, T., Wang, H., Tong, Y., Lu, C., Kong, W., and Wang, Z.: Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 79, 577 (2014).
28. Li, J., Xiong, S., Liu, Y., Ju, Z., and Qian, Y.: High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5, 981 (2013).
29. Zhu, Y., Pu, X., Song, W., Wu, Z., Zhou, Z., He, X., Lu, F., Jing, M., Tang, B., and Ji, X.: High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J. Alloys Compd. 617, 988 (2014).
30. Gu, L., Qian, L., Lei, Y., Wang, Y., Li, J., Yuan, H., and Xiao, D.: Microwave-assisted synthesis of nanosphere-like NiCo2O4 consisting of porous nanosheets and its application in electro-catalytic oxidation of methanol. J. Power Sources 261, 317 (2014).
31. Yang, J., Yu, C., Fan, X., Ling, Z., Qiu, J., and Gogotsi, Y.: Facile fabrication of MWCNT doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. J. Mater. Chem. A 1, 1963 (2013).
32. Liu, B., Zhang, Y., and Tang, L.: X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−d cathode for solid oxide fuel cells. Int. J. Hydrog. Energy 34, 435 (2009).
33. Zhou, X., Chen, G., Tang, J., Ren, Y., and Yang, J.: One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries. J. Power Sources 299, 97 (2015).
34. Marco, J.F., Gancedo, J.R., Gracia, M., Gautier, J.L., Rios, E., and Berry, F.J.: Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 153, 74 (2000).
35. Dupin, J.-C., Gonbeau, D., Vinatier, P., and Levasseur, A.: Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319 (2000).
36. Chen, H., Jiang, G., Yu, W., Liu, D., Liu, Y., Li, L., Huang, Q., Tong, Z., and Chen, W.: Preparation of electrospun ZnS-loaded hybrid carbon nanofibericmembranes for photocatalytic applications. Powder Technol. 298, 1 (2016).
37. Brousse, T., Bélanger, D., and Long, J.: To be or not to be pseudocapacitive? batteries and energy storage. J. Electrochem. Soc. 162, A5185 (2015).
38. Huang, T., Zhao, C., Wu, L., Lang, X., Liu, K., and Hu, Z.: 3D network-like porous MnCo2O4 by the sucrose-assisted combustion method for high-performance supercapacitors. Ceram. Int. 43, 1968 (2017).
39. Yu, M., Sun, H., Sun, X., Lu, F., Wang, G., Hu, T., Qiu, H., and Lian, J.: Hierarchical Al-doped and hydrogenated ZnO nanowire@MnO2 ultra thin nanosheet core/shell arrays for high performance supercapacitor electrode. Int. J. Electrochem. Sci. 8, 2313 (2013).

Electrospun carbon nanofiberic coated with ambutan-like NiCo2O4 microspheres as electrode materials

  • Hua Chen (a1), Guohua Jiang (a1) (a2) (a3), Weijiang Yu (a1), Depeng Liu (a1), Yongkun Liu (a1), Lei Li (a1) and Qin Huang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed