Skip to main content Accessibility help

Electrode architecture of carbon-coated silicon nanowires through magnesiothermic reduction for lithium-ion batteries

  • Young Gyu Nam (a1), Mohammad Humood (a1), Haejune Kim (a1) and Andreas A. Polycarpou (a1)


Carbon-coated silicon nanowires (C-Si NWs) were prepared as anodes for lithium-ion batteries (LIBs). The C-Si NWs were synthesized using a simple and effective fabrication strategy via magnesiothermic reduction. The synthesis sequence of carbon coating before the chemical etching of the reduced Si NWs/MgO composite was found to be critical for improved battery performance. In addition, carbon coating was found to help to stabilize the solid electrolyte interphase layer during battery cycling, which is important to realize the benefits of Si-based LIBs. This synthesis method provides an efficient route to synthesizing high-performance Si electrodes via magnesiothermic reduction.


Corresponding author

Address all correspondence to Andreas A. Polycarpou at


Hide All
1. Goodenough, J.B. and Manthiram, A.: A perspective on electrical energy storage. MRS Commun. 4, 135 (2014).
2. Diouf, B. and Pode, R.: Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375 (2015).
3. Kumari, T.S.D., Surya, R., Stephan, A.M., Jeyakumar, D., and Prem Kumar, T.: High-capacity potato peel-shaped graphite for lithium-ion batteries. MRS Commun. 1, 41 (2011).
4. Kasavajjula, U., Wang, C., and Appleby, A.J.: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003 (2007).
5. Kim, S. and Huang, H.-Y.S.: Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries. J. Mater. Res. 31, 3506 (2016).
6. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat Nano 3, 31 (2008).
7. Su, X., Wu, Q., Li, J., Xiao, X., Lott, A., Lu, W., Sheldon, B.W., and Wu, J.: Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014).
8. Wang, Y. and Cao, G.: Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20, 2251 (2008).
9. Mai, L., Xu, X., Xu, L., Han, C., and Luo, Y.: Vanadium oxide nanowires for Li-ion batteries. J. Mater. Res. 26, 2175 (2011).
10. Liu, B., Deng, D., Lee, J.Y., and Aydil, E.S.: Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries. J. Mater. Res. 25, 1588 (2010).
11. Huang, X., Yang, J., Mao, S., Chang, J., Hallac, P.B., Fell, C.R., Metz, B., Jiang, J., Hurley, P.T., and Chen, J.: Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv. Mater. 26, 4326 (2014).
12. Ge, M., Rong, J., Fang, X., Zhang, A., Lu, Y., and Zhou, C.: Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174 (2013).
13. Wang, B., Li, X., Zhang, X., Luo, B., Jin, M., Liang, M., Dayeh, S.A., Picraux, S.T., and Zhi, L.: Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 7, 1437 (2013).
14. Peng, K., Jie, J., Zhang, W., and Lee, S.-T.: Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 33105 (2008).
15. Chan, C.K., Patel, R.N., O'Connell, M.J., Korgel, B.A., and Cui, Y.: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).
16. Yoshio, M., Wang, H., Fukuda, K., Umeno, T., Dimov, N., and Ogumi, Z.: Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 149, A1598 (2002).
17. Ng, S.-H., Wang, J., Wexler, D., Konstantinov, K., Guo, Z.-P., and Liu, H.-K.: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chemie Int. Ed. 45, 6896 (2006).
18. Huang, R., Fan, X., Shen, W., and Zhu, J.: Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 95, 133119 (2009).
19. Kim, H., Huang, X., Wen, Z., Cui, S., Guo, X., and Chen, J.: Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. J. Mater. Chem. A 3, 1947 (2015).
20. Pan, Z.W., Dai, Z.R., Xu, L., Lee, S.T., and Wang, Z.L.: Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J. Phys. Chem. B 105, 2507 (2001).
21. Kuzmin, P.G., Shafeev, G.A., Bukin, V.V., Garnov, S.V., Farcau, C., Carles, R., Warot-Fontrose, B., Guieu, V., and Viau, G.: Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties. J. Phys. Chem. C 114, 15266 (2010).
22. Bao, Z., Weatherspoon, M.R., Shian, S., Cai, Y., Graham, P.D., Allan, S.M., Ahmad, G., Dickerson, M.B., Church, B.C., Kang, Z., Abernathy, H.W., Summers, C.J., Liu, M., and Sandhage, K.H.: Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132), 172 (2007).
23. Shen, Y., Zhao, P., and Shao, Q.: Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater. 188, 46 (2014).
24. Batchelor, L., Loni, A., Canham, L.T., Hasan, M., and Coffer, J.L.: Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon 4, 259 (2012).
25. Zhu, J. and Deng, D.: Synthesis of curved Si flakes using Mg powder as both the template and reductant and their derivatives for lithium-ion batteries. RSC Adv. 5, 67315 (2015).
26. Lamontagne, P., Soucy, G., Veilleux, J., Quesnel, F., Hovington, P., Zhu, W., and Zaghib, K.: Synthesis of silicon nanowires from carbothermic reduction of silica fume in RF thermal plasma. Phys. status solidi 211, 1610 (2014).
Type Description Title
Supplementary materials

Nam et al supplementary material
Nam et al supplementary material 1

 Word (280 KB)
280 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed