Skip to main content Accessibility help

The effects of fluid composition and shear conditions on bacterial adhesion to an antifouling peptide-coated surface

  • Patrícia Alves (a1), Sivan Nir (a2), Meital Reches (a2) and Filipe Mergulhão (a1)


Biofilms can damage implants and are difficult to treat. Here, we assessed the performance of a tripeptide that self-assembles into an antifouling coating over a broad range of shear conditions that are relevant to biomedical applications. Adhesion assays were performed using a parallel plate flow chamber. The results show that the coating can reduce Escherichia coli adhesion up to 70% when compared with glass. At a shear rate of 15/s, typical for urinary catheters, the coating reduced the adhesion by more than 50%. These findings suggest critical features that should be considered when developing surfaces for biomedical purposes.


Corresponding author

Address all correspondence to Meital Reches and Filipe Mergulhão at E-mail: and


Hide All
1.Costerton, J.W., Stewart, P.S., and Greenberg, E.P.: Bacterial biofilms: a common cause of persistent infections. Science 284, 1318 (1999).
2.Miquel, S., Lagrafeuille, R., Souweine, B., and Forestier, C.: Anti-biofilm activity as a health issue. Front Microbiol. 7, 592 (2016).
3.Stamm, W.E. and Norrby, S.R.: Urinary tract infections: disease panorama and challenges. J. Infect. Dis. 183, S1 (2001).
4.Koseoglu, H., Aslan, G., Esen, N., Sen, B.H., and Coban, H.: Ultrastructural stages of biofilm development of Escherichia coli on urethral catheters and effects of antibiotics on biofilm formation. Urology 68, 942 (2006).
5.Stamm, W.E. and Hooton, T.M.: Management of urinary tract infections in adults. N. Engl. J. Med. 329, 1328 (1993).
6.Shunmugaperumal, T.: Biofilm eradication and prevention: a pharmaceutical approach to medical device infections (John Wiley & Sons, New Jersey, 2010).
7.Nir, S. and Reches, M.: Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Curr. Opin. Biotechnol. 39, 48 (2016).
8.Kirschner, C.M. and Brennan, A.B.: Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 42, 211 (2012).
9.Banerjee, I., Pangule, R.C., and Kane, R.S.: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690 (2011).
10.Li, B., and Logan, B.E.: Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf. B 36, 81 (2004).
11.An, Y.H., and Friedman, R.J.: Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. Part A 43, 338 (1998).
12.Moreira, J.M., Simões, M., Melo, L.F., and Mergulhão, F.J.: Escherichia coli adhesion to surfaces–a thermodynamic assessment. Colloid Polym. Sci. 293, 177 (2015).
13.Nuzzo, R.G.: Biomaterials: stable antifouling surfaces. Nat. Mater. 2, 207 (2003).
14.Maity, S., Nir, S., Zada, T., and Reches, M.: Self-assembly of a tripeptide into a functional coating that resists fouling. Chem. Comm. 50, 11154 (2014).
15.Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, M., Di Bonaventura, G., Hébraud, M., and Jaglic, Z.: Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313 (2017).
16.Absolom, D.R., Lamberti, F.V., Policova, Z., Zingg, W., van Oss, C.J., and Neumann, A.W.: Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46, 90 (1983).
17.Liu, C. and Zhao, Q.: Influence of surface-energy components of Ni–P–TiO2–PTFE nanocomposite coatings on bacterial adhesion. Langmuir 27, 9512 (2011).
18.Gomes, L.C., Silva, L.N., Simoes, M., Melo, L.F., and Mergulhao, F.J.: Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. J. Biomed. Mater. Res. Part A 103, 1414 (2015).
19.Gomes, L., Moreira, J., Teodósio, J., Araújo, J., Miranda, J., Simões, M., Melo, L., and Mergulhão, F.: 96-well microtiter plates for biofouling simulation in biomedical settings. Biofouling 30, 535 (2014).
20.Ong, Y.L., Razatos, A., Georgiou, G., and Sharma, M.M.: Adhesion Forces between E. coli bacteria and biomaterial surfaces. Langmuir 15, 2719 (1999).
21.Gallardo-Moreno, A.M., Navarro-Pérez, M.L., Vadillo-Rodríguez, V., Bruque, J.M., and González-Martín, M.L.: Insights into bacterial contact angles: difficulties in defining hydrophobicity and surface Gibbs energy. Colloids Surf. B 88, 373 (2011).
22.Baier, R., Meyer, A., Natiella, J., Natiella, R., and Carter, J.: Surface properties determine bioadhesive outcomes: methods and results. J. Biomed. Mater. Res. Part A 18, 337 (1984).
23.Moreira, J., Araújo, J., Miranda, J.M., Simões, M., Melo, L., and Mergulhão, F.: The effects of surface properties on Escherichia coli adhesion are modulated by shear stress. Colloids Surf. B 123, 1 (2014).
24.Busscher, H.J. and van der Mei, H.C.: Microbial adhesion in flow displacement systems. Clin. Microbiol. Rev. 19, 127 (2006).
25.Bakker, D., Van der Plaats, A., Verkerke, G., Busscher, H., and Van der Mei, H.: Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces. Appl. Environ. Microbiol. 69, 6280 (2003).
26.Velraeds, M.M., Van Der Mei, H.C., Reid, G., and Busscher, H.J.: Inhibition of initial adhesion of uropathogenic Enterococcus faecalis to solid substrata by an adsorbed biosurfactant layer from Lactobacillus acidophilus. Urology 49, 790 (1997).
27.Hwang, N.H., Turitto, V.T., and Yen, M.R.: Advances in cardiovascular engineering (Springer Science & Business Media, New York, 2013).
28.Inauen, W., Baumgartner, H.R., Bombeli, T., Haeberli, A., and Straub, P.W.: Dose-and shear rate-dependent effects of heparin on thrombogenesis induced by rabbit aorta subendothelium exposed to flowing human blood. Arterioscler. Thromb. Vasc. Biol. 10, 607 (1990).
29.Marx, K.A.: Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution − surface interface. Biomacromolecules 4, 1099 (2003).
30.Tompkins, H.G. and McGahan, W.A.: Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, New York, 1999).
31.Moreira, J., Ponmozhi, J., Campos, J., Miranda, J.M., and Mergulhão, F.: Micro-and macro-flow systems to study Escherichia coli adhesion to biomedical materials. Chem. Eng. Sci. 126, 440 (2015).
32.Teodósio, J., Simões, M., Melo, L., and Mergulhão, F.: Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 27, 1 (2011).
33.Teodósio, J., Simões, M., and Mergulhão, F.: The influence of nonconjugative Escherichia coli plasmids on biofilm formation and resistance. J. Appl. Microbiol. 113, 373 (2012).
34.Neidhardt, F.C.: Motility and chemotaxis. In Escherichia coli and Salmonella Typhimurium: Cellular and Molecular biology (ASM Press, Washington, DC, 1987), p. 732.
35.Moreira, J., Fulgêncio, R., Alves, P., Machado, I., Bialuch, I., Melo, L., Simões, M., and Mergulhão, F.: Evaluation of SICAN performance for biofouling mitigation in the food industry. Food Control 62, 201 (2016).
36.Moreira, J., Gomes, L., Simões, M., Melo, L., and Mergulhão, F.: The impact of material properties, nutrient load and shear stress on biofouling in food industries. Food Bioprod. Process. 95, 228 (2015).
37.Frias, J., Ribas, F., and Lucena, F.: Effects of different nutrients on bacterial growth in a pilot distribution system. Antonie Van Leeuwenhoek 80, 129 (2001).
38.Van Oss, C.: Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf. B 5, 91 (1995).
39.Van Oss, C.J., Good, R.J., and Chaudhury, M.K.: Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4, 884 (1988).
40.Janczuk, B., Chibowski, E., Bruque, J., Kerkeb, M., and Caballero, F.G.: On the consistency of surface free energy components as calculated from contact angles of different liquids: an application to the cholesterol surface. J. Colloid Interface Sci. 159, 421 (1993).
41.Van Oss, C.J.: Interfacial Forces in Aqueous Media (CRC press, New York, 2006).
42.Ojovan, M.I.: Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. J. Exp. Theor. Phys. 79, 632 (2004).
43.Teodósio, J.S., Silva, F.C., Moreira, J.M., Simões, M., Melo, L.F., Alves, M.A., and Mergulhão, F.J.: Flow cells as quasi-ideal systems for biofouling simulation of industrial piping systems. Biofouling 29, 953 (2013).
44.Fletcher, M. and Loeb, G.: Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37, 67 (1979).
45.Cerca, N., Pier, G.B., Vilanova, M., Oliveira, R., and Azeredo, J.: Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 156, 506 (2005).
46.Oliveira, K., Oliveira, T., Teixeira, P., Azeredo, J., Henriques, M., and Oliveira, R.: Comparison of the adhesion ability of different Salmonella enteritidis serotypes to materials used in kitchens. J. Food Protect 69, 2352 (2006).
47.Bos, R., Van der Mei, H.C., and Busscher, H.J.: Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179 (1999).
48.Graham, M.V., Mosier, A.P., Kiehl, T.R., Kaloyeros, A.E., and Cady, N.C.: Development of antifouling surfaces to reduce bacterial attachment. Soft Matter 9, 6235 (2013).
Type Description Title
Supplementary materials

Alves et al. supplementary material
Tables S1 and Figures S1-S2

 Word (319 KB)
319 KB

The effects of fluid composition and shear conditions on bacterial adhesion to an antifouling peptide-coated surface

  • Patrícia Alves (a1), Sivan Nir (a2), Meital Reches (a2) and Filipe Mergulhão (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed