Skip to main content Accessibility help
×
Home

Effect of the ligand in the crystal structure of zinc oxide: an x-ray powder diffraction, x-ray absorption near-edge structure, and an extended x-ray absorption fine structure study

  • María de los A. Cepeda-Pérez (a1), Cristina M. Reyes-Marte (a1), Valerie Ann Carrasquillo (a1), William A. Muñiz (a1), Edgar J. Trujillo (a1), Rahul Singhal (a2), Harry Rivera (a3) and Mitk'El B. Santiago-Berríos (a1)...

Abstract

We analyze the effect of functionalization in the surface of zinc oxide crystal structure by 3-mercaptopropionic acid. X-ray powder diffraction data and extended x-ray absorption fine structure studies confirms a wurtzite structure. However, the morphology of the surface seems to be reduced and shows a film-like surface as demonstrated by x-ray absorption near edge structure and scanning electron microscopy. As a result of surface functionalization, the energy levels of the semiconductor were shifted toward reductive potentials (by 50 mV) as determined by diffuse reflectance and cyclic voltammetry.

Copyright

Corresponding author

Address all correspondence to Mitk'El B. Santiago-Berríos at msantiago326@suagm.edu

References

Hide All
1. Brown, P.R., Kim, D., Lunt, R.R., Zhao, N., Bawendi, M.G., Grossman, J.C., and Bulović, V.: Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863 (2014).
2. Wise, F.W.: Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33, 773 (2000).
3. Jiang, X., Schaller, R.D., Lee, S.B., Pietryga, J.M., Klimov, V.I., and Zakhidov, A.A.: PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J. Mater. Res. 22, 2204 (2007).
4. Choi, J.J., Lim, Y.-F., Santiago-Berrios, M.E.B., Oh, M., Hyun, B.-R., Sun, L., Bartnik, A.C., Goedhart, A., Malliaras, G.G., Abruña, H.D., Wise, F.W., and Hanrath, T.: PbSe nanocrystal excitonic solar cells. Nano Lett. 9, 3749 (2009).
5. Fulati, A., Usman Ali, S., Riaz, M., Amin, G., Nur, O., and Willander, M.: Miniaturized pH sensors based on zinc oxide nanotubes/nanorods. Sensors 9, 8911 (2009).
6. Hau, S.K., Yip, H.-L., Baek, N.S., Zou, J., O'Malley, K., and Jen, A.K.-Y.: Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008).
7. Niepelt, R., Schröder, U.C., Sommerfeld, J., Slowik, I., Rudolph, B., Möller, R., Seise, B., Csaki, A., Fritzsche, W., and Ronning, C.: Biofunctionalization of zinc oxide nanowires for DNA sensory applications. Nanoscale Res. Lett. 6, 511 (2011).
8. Zhang, B., Kong, T., Xu, W., Su, R., Gao, Y., and Cheng, G.: Surface functionalization of zinc oxide by carboxyalkylphosphonic acid self-assembled monolayers. Langmuir 26, 4514 (2010).
9. Voznyy, O., Zhitomirsky, D., Stadler, P., Ning, Z., Hoogland, S., and Sargent, E.H.: A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano 6, 8448 (2012).
10. Öztürk, S., Tasaltin, N., Kilinç, n, and Öztürk, Z.Z.: Fabrication of ZnO nanotubes using AAO template and sol–gel method. J. Optoelectron. Biomed. Mater. 1, 15 (2009).
11. Dong, F., Licheng, L., Weilin, X., Guangzhong, L., Zhiping, L., Yingsan, Z., Jie, X., and Chuanxi, X.: Hollow SnO2–ZnO hybrid nanofibers as anode materials for lithium-ion battery. Mater. Res. Express 1, 025012 (2014).
12. Pang, A., Chen, C., Chen, L., Liu, W., and Wei, M.: Flexible dye-sensitized ZnO quantum dots solar cells. RSC Adv. 2, 9565 (2012).
13. Petrella, A., Cosma, P., Lucia Curri, M., Rochira, S., and Agostiano, A.: Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study. J Nanopart Res 13, 6467 (2011).
14. Lokesh, R.N., Balakrishnan, L., Jeganathan, K., Layek, S., Verma, H.C., and Gopalakrishnan, N.: Role of surface functionalization in ZnO:Fe nanostructures. Mater. Sci. Eng. B 183, 39 (2014).
15. Roberts, D.R., Ford, R.G., and Sparks, D.L.: Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy. J. Colloid Interface Sci. 263, 364 (2003).
16. Jeong, E.-S., Yu, H.-J., Han, S.-W., An, S.J., Yoo, J., Kim, Y.-J., and Yi, G.-C.: Local structural properties of ZnO nanoparticles, nanorods, and powder studied by extended x-ray absorption fine structure. J. Korean Phys. Soc. 53, 461 (2008).
17. Jeong, E.-S., Yu, H.-J., Kim, Y.-J., Yi, G.-C., Choi, Y.-D., and Han, S.-W.: Local structural and optical properties of ZnO nanoparticles. J. Nanosci. Nanotechnol. 10, 3562 (2010).
18. ES, J., HJ, Y., Han, S., An, S., Yoo, J., Kim, Y., and Yi, G.: Local structural properties of ZnO nanoparticles, nanorods and powder studied by extended x-ray absorption fine structure. J. Korean Phys. Soc. 53, 461 (2008).
19. Ravel, B., and Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for x-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).
20. Aneesh, P.M., Vanaja, K.A., and Jayaraj, M.K.: Synthesis of ZnO nanoparticles by hydrothermal method. Proc. SPIE, Nanophotonic Materials IV, 6639, 66390J (2007).
21. Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, Oxford/New York, 1966).
22. Zhang, X.G.: Electrochemistry of Zinc Oxide, in Corrosion and Electrochemistry of Zinc, (Springer, Boston, 1996), p. 93.
23. Liu, Y., Liu, M.S., and Jen, A.K.-Y.: Synthesis and characterization of a novel and highly efficient light-emitting polymer. Acta Polym. 50, 105 (1999).
24. de la Cueva, L., Lauwaet, K., Otero, R., Gallego, J.M., Alonso, C., and Juarez, B.H.: Effect of chloride ligands on CdSe nanocrystals by cyclic voltammetry and x-ray photoelectron spectroscopy. J. Phys. Chem. C 118, 4998 (2014).
25. Liu, D., Wu, W., Qiu, Y., Yang, S., Xiao, S., Wang, Q.-Q., Ding, L., and Wang, J.: Surface functionalization of ZnO nanotetrapods with photoactive and electroactive organic monolayers. Langmuir 24, 5052 (2008).
Type Description Title
WORD
Supplementary materials

Cepeda-Pérez supplementary material
Figure S1

 Word (71 KB)
71 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed