Skip to main content Accessibility help

Effect of intermittent oxygen exposure on chemical vapor deposition of graphene

  • Selcuk Temiz (a1), Zafer Mutlu (a1), Sina Shahrezaei (a1), Mihrimah Ozkan (a1) (a2) and Cengiz S. Ozkan (a1) (a3)...


Chemical vapor deposition is the most proficient method for growing graphene on copper foils due to its scalability, repeatability, and uniformity, etc. Herein, we systematically study the effect of oxygen (O2) exposure on graphene growth. We introduced O2 before and during the growth, and then studied its effects on the morphology, crystallinity, and nucleation density of graphene. We observe that introducing O2 during growth significantly improves the graphene crystallinity while pre-dosing O2 before growth reduces the graphene nucleation density. These studies suggest that intermittent O2 exposure play a significant role in graphene growth, enabling scalable production of high-quality graphene.


Corresponding author

Address all correspondence to Cengiz S. Ozkan at


Hide All
1. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947).
2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
3. Ziegler, K.: Robust transport properties in graphene. Phys. Rev. Lett. 97, 266802 (2006).
4. Sarma, S.D., Adam, S., Hwang, E.H., and Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407 (2011).
5. Shishir, R.S. and Ferry, D.K.: Intrinsic mobility in graphene. J. Phys., Condens. Matter. 21, 232204 (2009).
6. Banszerus, L., Schmitz, M., Engels, S., Dauber, J., Oellers, M., Haupt, F., Watanabe, K., Taniguchi, T., Beschoten, B., and Stampfer, C.: Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).
7. Zandiatashbar, A., Lee, G.-H., An, S.J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C.R., Hone, J., and Koratkar, N.: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).
8. Li, X., Colombo, L., and Ruoff, R.S.: Synthesis of graphene films on copper foils by chemical vapor deposition. Adv. Mater. 28, 6247 (2016).
9. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., and Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009).
10. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).
11. Su, C.Y., Lu, A.Y., Xu, Y., Chen, F.R., Khlobystov, A.N., and Li, L.J.: High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332 (2011).
12. Han, G.H., Gunes, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin, H.J., Choi, J.Y., Pribat, D., and Lee, Y.H.: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144 (2011).
13. Vlassiouk, I., Smirnov, S., Regmi, M., Surwade, S.P., Srivastava, N., Feenstra, R., Eres, G., Parish, C., Lavrik, N., Datskos, P., Dai, S., and Fulvio, P.: Graphene nucleation density on copper: fundamental role of background pressure. J. Phys. Chem. C 117, 18919 (2013).
14. Zhao, P., Cheng, Y., Zhao, D., Yin, K., Zhang, X., Song, M., Yin, S., Song, Y., Wang, P., Wang, M., Xia, Y., and Wang, H.: The role of hydrogen in oxygen-assisted chemical vapor deposition growth of millimeter-sized graphene single crystals. Nanoscale 8, 7646 (2016).
15. Hao, Y., Bharathi, M.S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C.W., Tutuc, E., Yakobson, B.I., McCarty, K.F., Zhang, Y.W., Kim, P., Hone, J., Colombo, L., and Ruoff, R.S.: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720 (2013).
16. Kim, S.M., Hsu, A., Lee, Y.H., Dresselhaus, M., Palacios, T., Kim, K.K., and Kong, J.: The effect of copper pre-cleaning on graphene synthesis. Nanotechnology 24, 365602 (2013).
17. Wang, Y., Zheng, Y., Xu, X., Dubuisson, E., Bao, Q., Lu, J., and Loh, K.P.: Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927 (2011).
18. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).
19. Wang, Y.Y., Ni, Z.H., Yu, T., Shen, Z.X., Wang, H.M., Wu, Y.H., Chen, W., and Wee, A.T.S.: Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637 (2008).
20. Malard, L.M., Pimenta, M.A.A., Dresselhaus, G., and Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).
21. Mutlu, Z., Shahrezaei, S., Temiz, S., Ozkan, M., and Ozkan, C.S.: Facile synthesis and characterization of two dimensional layered tin disulfide nanowalls. J. Electron. Mater. 45, 2115 (2016).
22. Kim, K., Coh, S., Tan, L.Z., Regan, W., Yuk, J.M., Chatterjee, E., Crommie, M.F., Cohen, M.L., Louie, S.G., and Zettl, A.: Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012).
23. Mutlu, Z., Wu, R.J., Wickramaratne, D., Shahrezaei, S., Liu, C., Temiz, S., Patalano, A., Ozkan, M., Lake, R.K., Mkhoyan, K.A., and Ozkan, C.S.: Phase engineering of 2D tin sulfides. Small 12, 2998 (2016).
24. Mutlu, Z., Ruiz, I., Wu, R., Ionescu, R., Shahrezaei, S., Temiz, S., Ozkan, M., Mkhoyan, A.K., and Ozkan, C. S.: Chemical vapor deposition of partially oxidized graphene. RSC Adv. 7, 32209 (2017).
25. Childres, I., Jauregui, L.A., Park, W., Cao, H., and Chen, Y.P.: Raman spectroscopy of graphene and related materials. In New Developments in Photon and Materials Research, edited by Jang, J.I. (Nova Science, 2013), pp. 120.
26. Ni, Z., Wang, Y., Yu, T., and Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273 (2008).
27. Ferrah, D., Renault, O., Petit-Etienne, C., Okuno, H., Berne, C., Bouchiat, V., and Cunge, G.: XPS investigations of graphene surface cleaning using H2- and Cl2-based inductively coupled plasma. Surf. Interface Anal. 48, 451 (2016).
Type Description Title
Supplementary materials

Temiz et al supplementary material
Temiz et al supplementary material 1

 PDF (914 KB)
914 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed