Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T12:35:58.477Z Has data issue: false hasContentIssue false

Diamond microelectrode arrays for in vitro neuronal recordings

Published online by Cambridge University Press:  09 August 2017

Matthew McDonald*
Affiliation:
Institute of Materials Research, Hasselt University, 3590 Diepenbeek, Belgium
Antonina Monaco*
Affiliation:
Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium
Farnoosh Vahidpour
Affiliation:
Institute of Materials Research, Hasselt University, 3590 Diepenbeek, Belgium
Ken Haenen
Affiliation:
Institute of Materials Research, Hasselt University, 3590 Diepenbeek, Belgium
Michele Giugliano
Affiliation:
Department of Biomedical Sciences, University of Antwerp, B-2610 Wilrijk, Belgium Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
Milos Nesladek
Affiliation:
Institute of Materials Research, Hasselt University, 3590 Diepenbeek, Belgium Interuniversity Microelectronics Center (IMEC), B-3001 Heverlee, Belgium
*
Address all correspondence to M. McDonald at mattmcd87@gmail.com and A. Monaco at antonina.monaco@uantwerpen.be
Address all correspondence to M. McDonald at mattmcd87@gmail.com and A. Monaco at antonina.monaco@uantwerpen.be
Get access

Abstract

A novel microfabrication technique for microelectrode arrays (MEAs) with a full diamond–cell interface is demonstrated. Boron-doped nano-crystalline diamond (BNCD) is used as a conductive electrode material on metal tracks insulated by intrinsic NCD. MEAs successfully recorded spontaneous electrical activity in rat primary cortical neuronal cultures. Patch-clamp measurements show no alterations to cell membrane passive properties or active firing response, for cell developing ex vivo on diamond. Impedance analysis revealed low impedance magnitude of BNCD electrodes, suitable for multi-unit neuronal recordings. Additionally, the impedance phase of the fabricated electrodes shows a high degree of capacitive coupling, ideal for neuron stimulation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nebel, C.E., Rezek, B., Shin, D., Uetsuka, H., and Yang, N.: Diamond for bio-sensor applications. J. Phys. D Appl. Phys. 40, 6443 (2007).Google Scholar
2.Kraft, A., Gmbh, G., and Str, K.: Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355 (2007).Google Scholar
3.Stett, A., Egert, U., Guenther, E., Hofmann, F., Meyer, T., Nisch, W., and Haemmerle, H.: Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 377, 486 (2003).Google Scholar
4.Vaitkuviene, A., McDonald, M., Vahidpour, F., Noben, J.-P., Sanen, K., Ameloot, M., Ratautaite, V., Kaseta, V., Biziuleviciene, G., Ramanaviciene, A., Nesladek, M., and Ramanavicius, A.: Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells. New Biotechnol. 32, 7 (2015).Google Scholar
5.Cottance, M., Nazeer, S., Rousseau, L., Lissorgues, G., Bongrain, A., Kiran, R., Scorsone, E., Bergonzo, P., Bendali, A., Picaud, S., and Joucla, S.: Diamond micro-electrode arrays (MEAs): a new route for in-vitro applications. DTIP No. April, 16 (2013).Google Scholar
6.Maybeck, V., Edgington, R., Bongrain, A., Welch, J.O., Scorsone, E., Bergonzo, P., Jackman, R.B., and Offenhäusser, A.: Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc. Mater. 3, 283 (2014).Google Scholar
7.Alcaide, M., Taylor, A., Fjorback, M., Zachar, V., and Pennisi, C.P.: Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation. Front. Neurosci. 10, 87 (2016).Google Scholar
8.Vahidpour, F., Curley, L., Biró, I., Mcdonald, M., Croux, D., Pobedinskas, P., Haenen, K., Giugliano, M., Živcová, Z.V., Kavan, L. and Nesládek, M.: All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Phys. status solidi 214, (2017).Google Scholar
9.Meijs, S., Alcaide, M., Sørensen, C., McDonald, M., Sørensen, S., Rechendorff, K., Gerhardt, A., Nesladek, M., Rijkhoff, N. J. M., and Pennisi, C. P.: Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. J. Neural Eng. 13, 56011 (2016).Google Scholar
10.Edgington, R.J., Thalhammer, A., Welch, J.O., Bongrain, A., Bergonzo, P., Scorsone, E., Jackman, R.B., and Schoepfer, R.: Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. J. Neural Eng. 10, 56022 (2013).Google Scholar
11.Kern, W.: The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887 (1990).Google Scholar
12.Pobedinskas, P., Degutis, G., Dexters, W., Janssen, W., Janssens, S.D., Conings, B., Ruttens, B., D'Haen, J., Boyen, H.-G., Hardy, A., Van Bael, M.K., and Haenen, K.: Surface plasma pretreatment for enhanced diamond nucleation on AlN. Appl. Phys. Lett. 102, 201609 (2013).Google Scholar
13.Ojovan, S.M., McDonald, M., Rabieh, N., Shmuel, N., Erez, H., Nesladek, M., and Spira, M.E.: Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation. Front. Neuroeng. 7, 1 (2014).Google Scholar
14.Linaro, D., Couto, J., and Giugliano, M.: Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. J. Neurosci. Methods 230, 5 (2014).Google Scholar
15.Mahmud, M., Pulizzi, R., Vasilaki, E., and Giugliano, M.: QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays. Front. Neuroinform. 8, 26 (2014).Google Scholar
16.Vandevelde, T., Nesladek, M., Quaeyhaegens, C., and Stals, L.: Optical emission spectroscopy of the plasma during CVD diamond growth with nitrogen addition. Thin Solid Films 290–291, 143 (1996).Google Scholar
17.Janssens, S.D., Pobedinskas, P., Vacik, J., Petráková, V., Ruttens, B., D'Haen, J., Nesládek, M., Haenen, K., and Wagner, P.: Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal-insulator transition. New J. Phys. 13 (2011).Google Scholar
18.Merrill, D.R. and Tresco, P.A.: Impedance characterization of microarray recording electrodes in vitro. IEEE Trans. Biomed. Eng. 52, 1960 (2005).Google Scholar
19.Honda, K., Rao, T.N., Tryk, D.A., Fujishima, A., Watanabe, M., Yasui, K., and Masuda, H.: Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. J. Electrochem. Soc. 147, 659 (2000).Google Scholar
20.Fromherz, P. and Stett, A.: Silicon-neuron junction: capacitive stimulation of an individual neuron on a silicon chip. Phys. Rev. Lett. 21 75, 1670 (1995).Google Scholar
21.Cogan, S.F., Ludwig, K.A., Welle, C.G. and Takmakov, P.: Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 13, 21001 (2016).Google Scholar
22.Morin, F.O., Takamura, Y., and Tamiya, E.: Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J. Biosci. Bioeng. 100, 131 (2005).Google Scholar
23.Gerwig, R., Fuchsberger, K., Schroeppel, B., Link, G.S., Heusel, G., Kraushaar, U., Schuhmann, W., Stett, A., and Stelzle, M.: PEDOT—CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties. Front. Neuroeng. 5, 8 (2012).Google Scholar
24.Frank, O., Petrák, V., and Tarábková, H.: Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution. Electochem. Acta 87, 518 (2013).Google Scholar
25.Regehr, K.J., Domenech, M., Koepsel, J.T., Carver, K.C., Ellison-zelski, J., Murphy, W.L., Schuler, L.A., Alarid, E.T., and David, J.: Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132 (2009).Google Scholar
26.Nagarah, J. M.: Planar Silicon Patch-Clamp Electrodes Integrated with Polydimethylsiloxane Microfluidics, University of California, Los Angeles, USA, 2009.Google Scholar
27.Krysova, H., Vlckova-Zivcova, Z., Barton, J., Petrak, V., Nesladek, M., Cigler, P., and Kavan, L.: Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification. Phys. Chem. Chem. Phys. 17, 1165 (2015).Google Scholar
28.Garra, J., Long, T., Currie, J., Schneider, T., White, R., and Paranjape, M.: Dry etching of polydimethylsiloxane for microfluidic systems. J. Vac. Sci. Technol. A Vacuum Surf. Film. 20, 975 (2002).Google Scholar
29.Fattahi, P., Yang, G., Kim, G., and Abidian, M.R.: A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26, 1846 (2014).Google Scholar
30.Piret, G., Hébert, C., Mazellier, J.-P., Rousseau, L., Scorsone, E., Cottance, M., Lissorgues, G., Heuschkel, M.O., Picaud, S., Bergonzo, P., and Yvert, B.: 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53, 173 (2015).Google Scholar