Skip to main content Accessibility help
×
Home

Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: characterization and antibacterial activity

  • L. Arellano-Sandoval (a1), E. Delgado (a1), T.A. Camacho-Villegas (a2), J. Bravo-Madrigal (a3), R. Manríquez-González (a1), P.H. Lugo-Fabres (a2), G. Toriz (a1) (a4) and L. García-Uriostegui (a5)...

Abstract

This work focuses on the functionalization of agave xylan-type hemicellulose functionalized with trimethoxysilylpropylmethacrylate and crosslinked with N-vinylcaprolactam to obtain a thermoresponsive material for potential applications in drug delivery. The hydrogels showed an interconnected and porous architecture with a lower critical solution temperature (LCST) close to poly(N-vinylcaprolactam)’s (PNVCL) LCST. These materials showed a good capacity to load ciprofloxacin (in the range 9.5 × 10−3–8.4 × 10−3 mg/mL), above the minimum inhibitory concentration (MIC ≤ 0.004 × 10−3–0.5 × 10−3 mg/mL) for gram-positive and gram-negative bacteria. The hybrid hydrogel inhibited the growth of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.

Copyright

Corresponding author

Address all correspondence to L. Garcia-Uriostegui at lorettauriostegui@gmail.com

References

Hide All
1.Chimphango, A.F.A., van Zyl, W.H., and Görgens, J.F.: In situ enzymatic aided formation of xylan hydrogels and encapsulation of horse radish peroxidase for slow release. Carbohydr. Polym. 88, 1109 (2012).
2.Gatenholm, P. and Tenkanen, M. (eds): Hemicelluloses: Science and Technology (American Chemical Society, Washington, D.C., 2003).
3.Ebringerová, A., Hromádková, Z., and Heinze, T.: Hemicellulose. In Polysaccharides I: Structure, Characterization and Use, edited by Heinze, T. (Springer, Berlin/Heidelberg, 2005) pp. 167.
4.Markstedt, K., Håkansson, K., Toriz, G., and Gatenholm, P.: Materials from trees assembled by 3D printing — Wood tissue beyond nature limits. Appl. Mater. Today 15, 280 (2019).
5.Consejo Regulador del Tequila Mexico: https://www.crt.org.mx/index.php/es/ (accessed August 30, 2019).
6.Li, H., Foston, M.B., Kumar, R., Samuel, R., Gao, X., Hu, F., Ragauskas, A.J., and Wyman, C.E.: Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv. 2, 4951 (2012).
7.Li, X. and Pan, X.: Hydrogels based on hemicellulose and lignin from lignocellulose biorefinery: a mini-review. J. Biobased Mater. Bioenergy 4, 289 (2010).
8.Kong, W.-Q., Gao, C.-D., Hu, S.-F., Ren, J.-L., Zhao, L.-H., and Sun, R.-C.: Xylan-modified-based hydrogels with temperature/pH dual sensitivity and controllable drug delivery behavior. Materials 10, 304 (2017).
9.Venugopal, J., Rajeswari, R., Shayanti, M., Sridhar, R., Sundarrajan, S., Balamurugan, R., and Ramakrishna, S.: Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction. Mater. Sci. Eng. C 33, 1325 (2013).
10.Dai, Q.-Q., Ren, J.-L., Peng, F., Chen, X.-F., Gao, C.-D., and Sun, R.-C.: Synthesis of acylated xylan-based magnetic Fe3O4 hydrogels and their application for H2O2 detection. Materials 9, 690 (2016).
11.Kuzmenko, V., Hägg, D., Toriz, G., and Gatenholm, P.: In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydr. Polym. 102, 862 (2014).
12.Gao, C., Ren, J., Zhao, C., Kong, W., Dai, Q., Chen, Q., Liu, C., and Sun, R.: Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr. Polym. 151, 189 (2016).
13.Peng, X.-W., Ren, J.-L., Zhong, L.-X., and Sun, R.-C.: Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12, 3321 (2011).
14.Taokaew, S., Phisalaphong, M., and Newby, B.-m.Z.: Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22, 2311 (2015).
15.Bourges, X., Weiss, P., Daculsi, G., and Legeay, G.: Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv. Colloid Interface Sci. 99, 215 (2002).
16.Roy, D., Cambre, J.N., and Sumerlin, B.S.: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278 (2010).
17.Tang, S., Bhandari, R., Delaney, S.P., Munson, E.J., Dziubla, T.D., and Hilt, J.Z.: Synthesis and characterization of thermally responsive N-isopropylacrylamide hydrogels copolymerized with novel hydrophobic polyphenolic crosslinkers. Mater. Today Commun. 10, 46 (2017).
18.Cruz, A., García-Uriostegui, L., Ortega, A., Isoshima, T., and Burillo, G.: Radiation grafting of N-vinylcaprolactam onto nano and macrogels of chitosan: synthesis and characterization. Carbohydr. Polym. 155, 303 (2017).
19.Reid, G., Sharma, S., Advikolanu, K., Tieszer, C., Martin, R.A., and Bruce, A.W.: Effects of ciprofloxacin, norfloxacin, and ofloxacin on in vitro adhesion and survival of Pseudomonas aeruginosa AK1 on urinary catheters. Antimicrob. Agents Chemother. 38, 1490 (1994).
20.Li, H.-Y., Sun, S.-N., Zhou, X., Peng, F., and Sun, R.-C.: Structural characterization of hemicelluloses and topochemical changes in Eucalyptus cell wall during alkali ethanol treatment. Carbohydr. Polym. 123, 17 (2015).
21.Salon, M.C.B., Gerbaud, G., Abdelmouleh, M., Bruzzese, C., Boufi, S., and Belgacem, M.N.: Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Antimicrob. Agents Chemother. 45, 473 (2007).
22.Werner, K., Pommer, L., and Broström, M.: Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 110, 130 (2014).
23.Varaprasad, K., Raghavendra, G.M., Jayaramudu, T., Yallapu, M.M., and Sadiku, R.: A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 79, 958 (2017).
24.Toh, W.S. and Loh, X.J.: Advances in hydrogel delivery systems for tissue regeneration. Mater. Sci. Eng. C 45, 690 (2014).
25.Hu, S., Cai, X., Qu, X., Yu, B., Yan, C., Yang, J., Li, F., Zheng, Y., and Shi, X.: Preparation of biocompatible wound dressings with long-term antimicrobial activity through covalent bonding of antibiotic agents to natural polymers. Int. J. Biol. Macromol. 123, 1320 (2019).
26.Wang, Y., Yao, L., Ren, T., and He, J.: Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy. J. Colloid Interface Sci. 540, 107 (2019).
Type Description Title
WORD
Supplementary materials

Arellano-Sandoval et al. supplementary material
Arellano-Sandoval et al. supplementary material

 Word (578 KB)
578 KB

Development of thermosensitive hybrid hydrogels based on xylan-type hemicellulose from agave bagasse: characterization and antibacterial activity

  • L. Arellano-Sandoval (a1), E. Delgado (a1), T.A. Camacho-Villegas (a2), J. Bravo-Madrigal (a3), R. Manríquez-González (a1), P.H. Lugo-Fabres (a2), G. Toriz (a1) (a4) and L. García-Uriostegui (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.