Skip to main content Accessibility help
×
Home

Design, fabrication, and characterization of polycaprolactone (PCL)-TiO2-collagenase nanofiber mesh scaffolds by Forcespinning

  • K. del Ángel-Sánchez (a1), N.A. Ulloa-Castillo (a1), Emmanuel Segura-Cárdenas (a1), Oscar Martinez-Romero (a1) and Alex Elías-Zuñiga (a1)...

Abstract

We report on the design of polycaprolactone (PCL)-TiO2-collagenase mesh scaffolds by Forcespinning technique. The dependence of the degree of crystallinity in PCL caused by the incorporation of dopants (TiO2-collagenase) and the reduction of dimensionality (1D), during the nanofiber formation, were investigated by x-ray diffraction and differential scanning calorimetry. The tensile strength of the mesh scaffolds (randomly oriented) was determined using uniaxial testing equipment. The permeability was measured by contact angle obtaining an improvement in the hydrophobicity for the PCL-TiO2-collagenase mesh scaffolds. The results reported in this research are of great relevance for tissue engineering applications.

Copyright

Corresponding author

Address all correspondence to K. del Ángel-Sánchez at kdelangel@tec.mx

References

Hide All
1.Stratton, S., Shelke, N.B., Hoshino, K., Rudraiah, S., and Kumbar, S.G.: Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 1, 93 (2016).
2.Rambhia, K.J., and Ma, P.X..: Controlled drug release for tissue engineering. J. Control. Release 219, 119 (2015).
3.Jaiswal, A., and Jaiswal, A.: Nanofibrous scaffolds for tissue engineering applications. Brazilian Arch. Biol. Technol. 59, 1 (2016).
4.Chang, W.M., Wang, C.C., and Chen, C.Y.: The combination of electrospinning and forcespinning: effects on a viscoelastic jet and a single nanofiber. Chem. Eng. J. 244, 540 (2014).
5.Sarkar, K., Gómez, C., Zambrano, S., Ramírez, M., de Hoyos, E., Vásquez, H., and Lozano, K.: Electrospinning to Forcespinning™. Mater. Today 13, 12 (2010).
6.Hong, Y., Gao, C., Xie, Y., Gong, Y., and Shen, J.: Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 26, 6305 (2005).
7.Rwei, S.P., and Huang, C.C.: Electrospinning PVA solution-rheology and morphology analyses. Fibers Polym. 13, 44 (2012).
8.Yu, H., Jia, Y., Yao, C., and Lu, Y.: PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int. J. Pharm. 469, 17 (2014).
9.Caramella, C., Conti, B., Modena, T., Ferrari, F., Bonferoni, M.C., Genta, I., Rossi, S., Torre, M.L., Sandri, G., Sorrenti, M., Catenacci, L., Dorati, R., and Tripodo, G.: Controlled delivery systems for tissue repair and regeneration. J. Drug Deliv. Sci. Technol. 32, 206 (2016).
10.Matthews, J.A., Wnek, G.E., Simpson, D.G., and Bowlin, G.L.: Electrospinning of collagen nanofibers. Biomacromolecules 3, 232 (2002).
11.Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., and Zhang, X.: Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur. Polym. J. 49, 3834 (2013).
12.Ren, L., and Kotha, S.P.: Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett. 117, 153 (2014).
13.Zachary McEachin, K.L.: Production and characterization of Polycaprolactone Nanofibers via Forcespinning™ Technology. J. Appl. Polym. Sci. 126, 473 (2012).
14.Siqueira, I.A.W.B., de Moura, N.K., de Barros Machado, J.P., Backes, E.H., Roberto Passador, F., and de Sousa Trichês, E.: Porous membranes of the polycaprolactone (PCL) containing calcium silicate fibers for guided bone regeneration. Mater. Lett. 206, 210 (2017).
15.Tan, A.W., Pingguan-Murphy, B., Ahmad, R., and Akbar, S.A.: Review of Titania nanotubes: fabrication and cellular response. Ceram. Int. 38, 4421 (2012).
16.Haider, A.J., Al-Anbari, R.H., Kadhim, G.R., and Salame, C.T.: Exploring potential environmental applications of nanoparticles. Energy Procedia 119, 332 (2017).
17.Fierro-Arias, L., Campos-Cornejo, N.G., Contreras-Ruiz, J., Espinosa-Maceda, S., López-Gehrke, I., Márquez-Cárdenas, R., Ramírez-Padilla, M., Veras-Castillo, E., and Rodríguez-Alcocer, A.N.: Productos enzimáticos (hialuronidasa, colagenasa y lipasa) y su uso en dermatología. Dermatologia Rev. Mex. 61, 206 (2017).
18.Torra I Bou, J.E.: La colagenasa y el tejido desvitalizado. Rev. ROL Enf. 109, 109114 (2013).
19.Melmed, S., Polonsky, K.S., Reed Lorsen, P., and Kronenberg, H.M.: Williams Textbook of Endocrinology (Elsevier, Philadelphia, PA, 2016).
20.Del Ángel-Sánchez, K., Vázquez-Cuchillo, O., Salazar-Villanueva, M., Sánchez-Ramírez, J.F., Cruz-López, A., and Aguilar-Elguezabal, A.: Preparation, characterization and photocatalytic properties of nanostructured spheres synthesized by the Sol–Gel method modified with ethylene glycol. J. Sol-Gel Sci. Technol. 58, 360 (2011).
21.Van der Bogt, K.E.A., Sheikh, A.Y., Schrepfer, S., Hoyt, G., Cao, F., Ransohotf, K.J., Swijnenburg, R.J., Pearl, J., Lee, A., Fischbein, M., Contact, C.H., Robbins, R.C., and Wu, J.C.: Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118, 121 (2008).
22.Phipps, M.C., Clem, W.C., Grunda, J.M., Clines, G.A., and Bellis, S.L.: Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33, 524 (2012).
23.Dziadek, M., Menaszek, E., Zagrajczuk, B., Pawlik, J., and Cholewa-Kowalska, K.: New generation poly(e-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Mater. Sci. Eng. C 56, 9 (2015).
24.Zhang, J., and Qiu, Z.: Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly (ε-caprolactone)/thermally reduced graphene nanocomposites. Ind. Eng. Chem. Res. 50, 13885 (2011).
25.Ghosal, K., Thomas, S., Kalarikkal, N., and Gnanamanis, A.: Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: Preliminary physico-chemical studies for skin substitute. J. Polym. Res. 21, 2 (2014).
26.West, P.A., Torzilli, P.A., Chen, C., Lin, P., and Camacho, N.P.: Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10, 1 (2015).
27.Abdelrazek, E.M., Hezma, A.M., El-khodary, A., and Elzayat, A.M.: Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J. Basic Appl. Sci. 3, 10 (2016).
Type Description Title
UNKNOWN
Supplementary materials

del Ángel-Sánchez et al. supplementary material
del Ángel-Sánchez et al. supplementary material 1

 Unknown (165 KB)
165 KB

Design, fabrication, and characterization of polycaprolactone (PCL)-TiO2-collagenase nanofiber mesh scaffolds by Forcespinning

  • K. del Ángel-Sánchez (a1), N.A. Ulloa-Castillo (a1), Emmanuel Segura-Cárdenas (a1), Oscar Martinez-Romero (a1) and Alex Elías-Zuñiga (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed