Skip to main content Accessibility help
×
Home

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells

  • Jesse S. Ko (a1), Martin D. Donakowski (a2), Megan B. Sassin (a3), Joseph F. Parker (a3), Debra R. Rolison (a3) and Jeffrey W. Long (a3)...

Abstract

We previously demonstrated that electrode architectures comprising nanoscale birnessite-like MnOx affixed to three-dimensional carbon nanofoam (CNF) scaffolds offer performance advantages when used as cathodes in rechargeable zinc-ion cells. To discern chemical and physical changes at the MnOx@CNF electrode upon deep charge/discharge in aqueous Zn2+-containing electrolytes, we deploy electroanalytical methods and ex situ characterization by microscopy, elemental analysis, x-ray photoelectron spectroscopy, x-ray diffraction, and x-ray pair distribution function analyses. Our findings verify that redox processes at the MnOx are accompanied by reversible precipitation/dissolution of crystalline zinc hydroxide sulfate (Zn4(OH)6(SO4xH2O), mediated by the more uniformly reactive electrode structure inherent to the CNF scaffold.

Copyright

Corresponding author

Address all correspondence to Jeffrey W. Long at jeffrey.long@nrl.navy.mil

References

Hide All
1.Xu, C., Li, B., Du, H., and Kang, F.: Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933935 (2012).
2.Guduru, R.K. and Icaza, J.C.: A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6, 119 (2016).
3.Song, M., Tan, H., Chao, D., and Fan, H.J.: Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).
4.Kundu, D., Adams, B.D., Duffort, V., Hosseini Vajargah, S., and Nazar, L.F.: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).
5.Soundharrajan, V., Sambandam, B., Kim, S., Alfaruqi, M.H., Yunianto Putro, D., Jo, J., Kim, S., Mathew, V., Sun, Y.-K., and Kim, J.: Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18, 24022410 (2018).
6.Kundu, D., Hosseini Vajargah, S., Wan, L., Adams, B., Prendergast, D., and Nazar, L.F.: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881892 (2018).
7.Wei, C., Xu, C., Li, B., Du, H., and Kang, F.: Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J. Phys. Chem. Solids 73, 14871491 (2012).
8.Lee, B., Yoon, C.S., Lee, H.R., Chung, K.Y., Cho, B.W., and Oh, S.H.: Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).
9.Alfaruqi, M.H., Gim, J., Kim, S., Song, J., Pham, D.T., Jo, J., Xiu, Z., Mathew, V., and Kim, J.: A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121125 (2015).
10.Alfaruqi, M.H., Mathew, V., Gim, J., Kim, S., Song, J., Baboo, J.P., Choi, S.H., and Kim, J.: Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 36093620 (2015).
11.Lee, B., Lee, H.R., Kim, H., Chung, K.Y., Cho, B.W., and Oh, S.H.: Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 92659268 (2015).
12.Alfaruqi, M.H., Gim, J., Kim, S., Song, J., Jo, J., Kim, S., Mathew, V., and Kim, J.: Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320327 (2015).
13.Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K.S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K.T., and Liu, J.: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).
14.Lee, B., Seo, H.R., Lee, H.R., Yoon, C.S., Kim, J.H., Chung, K.Y., Cho, B.W., and Oh, S.H.: Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem. 9, 29482956 (2016).
15.Sun, W., Wang, F., Hou, S., Yang, C., Fan, X., Ma, Z., Gao, T., Han, F., Hu, R., Zhu, M., and Wang, C.: Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 97759778 (2017).
16.Ko, J.S., Sassin, M.B., Parker, J.F., Rolison, D.R., and Long, J.W.: Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells. Sustainable Energy Fuels 2, 626636 (2018).
17.Lytle, J.C., Wallace, J.M., Sassin, M.B., Barrow, A.J., Long, J.W., Dysart, J.L., Renninger, C.H., Saunders, M.P., Brandell, N.L., and Rolison, D.R.: The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D. Energy Environ. Sci. 4, 19131925 (2011).
18.Sassin, M.B., Hoag, C.P., Willis, B.T., Kucko, N.W., Rolison, D.R., and Long, J.W.: Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity. Nanoscale 5, 16491657 (2013).
19.Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., and Long, J.W.: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281286 (2007).
20.Fischer, A.E., Saunders, M.P., Pettigrew, K.A., Rolison, D.R., and Long, J.W.: Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: correlation of evolving pore-solid structure and electrochemical performance. J. Electrochem. Soc. 155, A246A252 (2008).
21.Chupas, P.J., Qui, X., Hanson, J.C., Lee, P.L., Grey, C.P., and Billinge, S.J.: Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Cryst. 36, 13421347 (2003).
22.Hammersley, A.P.: FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Cryst. 49, 646652 (2016).
23.Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Boz˘in, E.S., Bloch, J., Profen, T., and Billinge:, S.J. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter., 19, 335219 (2007).
24.Ko, J.S., Sassin, M.B., Rolison, D.R., and Long, J.W.: Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures. Electrochim. Acta 275, 225235 (2018).
25.Donakowski, M.D., Wallace, J.M., Sassin, M.B., Chapman, K.W., Parker, J.F., Long, J.W., and Rolison, D.R.: Crystal engineering in 3D: converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture. CrystEngComm 18, 60356048 (2016).
Type Description Title
PDF
Supplementary materials

Ko et al. supplementary material
Figures S1-S9 and Table S1

 PDF (1.3 MB)
1.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed