Skip to main content Accessibility help
×
Home

Coupling synthetic biology and programmable materials to construct complex tissue ecosystems

  • Catherine S. Millar-Haskell (a1), Allyson M. Dang (a2) and Jason P. Gleghorn (a1)

Abstract

Synthetic biology combines engineering and biology to produce artificial systems with programmable features. Specifically, engineered microenvironments have advanced immensely over the past few decades, owing in part to the merging of materials with biologic mimetic structures. In this review, the authors adapt a traditional definition of community ecology to describe “cellular ecology,” or the study of the distribution of cell populations and interactions within their microenvironment. The authors discuss two exemplar hydrogel platforms: (1) self-assembling peptide hydrogels and (2) poly(ethylene) glycol hydrogels and describe future opportunities for merging smart material design and synthetic biology within the scope of multicellular platforms.

Copyright

Corresponding author

Address all correspondence to Jason P. Gleghorn at gleghorn@udel.edu

References

Hide All
1.Benner, S.A. and Sismour, A.M.: Synthetic biology. Nat. Rev. Genet. 6, 533543 (2005).
2.Roberts, M.A.J., Cranenburgh, R.M., Stevens, M.P., and Oyston, P.C.F.: Synthetic biology: biology by design. Microbiol. Read. Engl. 159, 12191220 (2013).
3.Rosano, G.L. and Ceccarelli, E.A.: Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014).
4.Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A.: Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 19171920 (2007).
5.Hsu, P.D., Lander, E.S., and Zhang, F.: Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 12621278 (2014).
6.Sia, S.K., Gillette, B.M., and Yang, G.J.: Synthetic tissue biology: tissue engineering meets synthetic biology. Birth Defects Res. Part C Embryo Today Rev. 81, 354361 (2007).
7.Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., and Canaider, S.: An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463471 (2013).
8.Bokka, K.K., Jesudason, E.C., Lozoya, O.A., Guilak, F., Warburton, D., and Lubkin, S.R.: Morphogenetic implications of peristalsis-driven fluid flow in the embryonic lung. PLoS ONE 10, e0132015 (2015).
9.George, U.Z., Bokka, K.K., Warburton, D., and Lubkin, S.R.: Quantifying stretch and secretion in the embryonic lung: implications for morphogenesis. Mech. Dev. 138, 356363 (2015).
10.Kim, H.Y., Pang, M.-F., Varner, V.D., Kojima, L., Miller, E., Radisky, D.C., and Nelson, C. M.: Localized smooth muscle differentiation is essential for epithelial bifurcation during branching morphogenesis of the mammalian lung. Dev. Cell 34, 719726 (2015).
11.Patel, A.: The primary cilium calcium channels and their role in flow sensing. Pflüg. Arch.––Eur. J. Physiol. 467, 157165 (2015).
12.Kalluri, R.: The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582598 (2016).
13.Boghaert, E., Gleghorn, J.P., Lee, K., Gjorevski, N., Radisky, D.C., and Nelson, C.M.: Host epithelial geometry regulates breast cancer cell invasiveness. Proc. Natl. Acad. Sci. 109, 1963219637 (2012).
14.Ameis, D., Khoshgoo, N., and Keijzer, R.: Abnormal lung development in congenital diaphragmatic hernia. Semin. Pediatr. Surg. 26, 123128 (2017).
15.Zhang, W., Yu, X., Li, Y., Su, Z., Jandt, K.D., and Wei, G.: Protein-mimetic peptide nanofibers: motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci. 80, 94124 (2018).
16.Coin, I., Beyermann, M., and Bienert, M.: Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247 (2007).
17.Tsukamoto, J., Naruse, K., Nagai, Y., Kan, S., Nakamura, N., Hata, M., Omi, M., Hayashi, T., Kawai, T., and Matsubara, T.: Efficacy of a self-assembling peptide hydrogel, SPG-178-Gel, for bone regeneration and three-dimensional osteogenic induction of dental pulp stem cells. Tissue Eng. Part A 23, 13941402 (2017).
18.Tsutsumi, H., Kawamura, M., and Mihara, H.: Osteoblastic differentiation on hydrogels fabricated from Ca 2+-responsive self-assembling peptides functionalized with bioactive peptides. Bioorg. Med. Chem. 26, 31263132 (2018).
19.Li, R., Xu, J., Wong, D.S.H., Li, J., Zhao, P., and Bian, L.: Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling. Biomaterials 145, 3343 (2017).
20.Liu, X., Wang, X., Wang, X., Ren, H., He, J., Qiao, L., and Cui, F.-Z.: Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater. 9, 67986805 (2013).
21.Chen, S., Zhou, A., He, B., Zhao, W., Chen, X., and Jiang, D.: Designer D-form self-assembling peptide scaffolds promote the proliferation and migration of rat bone marrow-derived mesenchymal stem cells. Int. J. Mol. Med. 40, 679688 (2017).
22.Shi, J., Du, X., Yuan, D., Zhou, J., Zhou, N., Huang, Y., and Xu, B.: d-amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides. Biomacromolecules 15, 35593568 (2014).
23.Zhou, J., Du, X., Wang, J., Yamagata, N., and Xu, B.: Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials. Front. Chem. Sci. Eng. 11, 509515 (2017).
24.Hogrebe, N.J., Reinhardt, J.W., Tram, N.K., Debski, A.C., Agarwal, G., Reilly, M.A., and Gooch, K.J.: Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomater. 70, 110119 (2018).
25.Hogrebe, N.J. and Gooch, K.J.: Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel: effect of culture dimensionality on HMSC differentiation. J. Biomed. Mater. Res. A 104, 23562368 (2016).
26.Tavakol, S., Mousavi, S.M.M., Tavakol, B., Hoveizi, E., Ai, J., and Sorkhabadi, S.M.R.: Erratum to: mechano-transduction signals derived from self-assembling peptide nanofibers containing long motif of laminin influence neurogenesis in in-vitro and in-vivo. Mol. Neurobiol. 54, 24972497 (2017).
27.Tavakol, S., Saber, R., Hoveizi, E., Tavakol, B., Aligholi, H., Ai, J., and Rezayat, S.M.: Self-assembling peptide nanofiber containing long motif of laminin induces neural differentiation, tubulin polymerization, and neurogenesis: in vitro, ex vivo, and in vivo studies. Mol. Neurobiol. 53, 52885299 (2016).
28.Lu, C., Wang, Y., Yang, S., Wang, C., Sun, X., Lu, J., Yin, H., Jiang, W., Meng, H., Rao, F., Wang, X., and Peng, J.: Bioactive self-assembling peptide hydrogels functionalized with brain-derived neurotrophic factor and nerve growth factor mimicking peptides synergistically promote peripheral nerve regeneration. ACS Biomater. Sci. Eng. 4, 29943005 (2018).
29.Maude, S., Ingham, E., and Aggeli, A.: Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomed. 8, 823847 (2013).
30.Cheng, T.-Y., Wu, H.-C., Huang, M.-Y., Chang, W.-H., Lee, C.-H., and Wang, T.-W.: Self-assembling functionalized nanopeptides for immediate hemostasis and accelerative liver tissue regeneration. Nanoscale 5, 2734 (2013).
31.Saini, A., Serrano, K., Koss, K., and Unsworth, L.D.: Evaluation of the hemocompatibility and rapid hemostasis of (RADA) 4 peptide-based hydrogels. Acta Biomater. 31, 7179 (2016).
32.Yang, S., Wei, S., Mao, Y., Zheng, H., Feng, J., Cui, J., Xie, X., Chen, F., and Li, H.: Novel hemostatic biomolecules based on elastin-like polypeptides and the self-assembling peptide RADA-16. BMC Biotechnol. 18, 12 (2018).
33.Altunbas, A., Lee, S.J., Rajasekaran, S.A., Schneider, J.P., and Pochan, D.J.: Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32, 59065914 (2011).
34.Gelain, F., Unsworth, L.D., and Zhang, S.: Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J. Controlled Release 145, 231239 (2010).
35.Pugliese, R., Marchini, A., Saracino, G.A.A., Zuckermann, R.N., and Gelain, F.: Cross-linked self-assembling peptide scaffolds. Nano Res. 11, 586602 (2018).
36.Jansen, L.E., Birch, N.P., Schiffman, J.D., Crosby, A.J., and Peyton, S.R.: Mechanics of intact bone marrow. J. Mech. Behav. Biomed. Mater. 50, 299307 (2015).
37.Zhang, Z., Wu, G., Cao, Y., Liu, C., Jin, Y., Wang, Y., Yang, L., Guo, J., and Zhu, L.: Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion. Mater. Sci. Eng. C 93, 445454 (2018).
38.Hou, T., Li, Z., Luo, F., Xie, Z., Wu, X., Xing, J., Dong, S., and Xu, J.: A composite demineralized bone matrix––self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow. Biomaterials 35, 56895699 (2014).
39.Li, K., Zhang, Z., Li, D., Zhang, W., Yu, X., Liu, W., Gong, C., Wei, G., and Su, Z.: Biomimetic ultralight, highly porous, shape-adjustable, and biocompatible 3D graphene minerals via incorporation of self-assembled peptide nanosheets. Adv. Funct. Mater. 28, 1801056 (2018).
40.Wu, G., Pan, M., Wang, X., Wen, J., Cao, S., Li, Z., Li, Y., Qian, C., Liu, Z., Wu, W., Zhu, L., and Guo, J.: Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect. Sci. Rep. 5, 16681 (2015).
41.Schiele, N.R., Marturano, J.E., and Kuo, C.K.: Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis. Curr. Opin. Biotechnol. 24, 834840 (2013).
42.Annabi, N., Nichol, J.W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., and Dehghani, F.: Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B Rev. 16, 371383 (2010).
43.Peyton, S.R., Raub, C.B., Keschrumrus, V.P., and Putnam, A.J.: The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27, 48814893 (2006).
44.Huettner, N., Dargaville, T.R., and Forget, A.: Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol. 36, 372383 (2018).
45.Visser, R., Rico-Llanos, G.A., Pulkkinen, H., and Becerra, J.: Peptides for bone tissue engineering. J. Controlled Release 244, 122135 (2016).
46.Naba, A., Clauser, K.R., Hoersch, S., Liu, H., Carr, S.A., and Hynes, R.O.: The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11, M111.014647 (2012).
47.Jansen, L., McCarthy, T., Lee, M., and Peyton, S.: A synthetic, three-dimensional bone marrow hydrogel. University of Massachusetts Medical School Faculty Publications. 1528 (2018).
48.Anjum, F., Lienemann, P.S., Metzger, S., Biernaskie, J., Kallos, M.S., and Ehrbar, M.: Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation. Biomaterials 87, 104117 (2016).
49.Lv, H., Li, L., Sun, M., Zhang, Y., Chen, L., Rong, Y., and Li, Y.: Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res. Ther. 6, 103 (2015).
50.Rehmann, M.S., Luna, J.I., Maverakis, E., and Kloxin, A.M.: Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation: human mesenchymal stem cell tenogenic differentiation. J. Biomed. Mater. Res. A 104, 11621174 (2016).
51.Blache, U., Metzger, S., Vallmajo-Martin, Q., Martin, I., Djonov, V., and Ehrbar, M.: Dual role of mesenchymal stem cells allows for microvascularized bone tissue-like environments in PEG hydrogels. Adv. Healthc. Mater. 5, 489498 (2016).
52.Mahadevaiah, S., Robinson, K.G., Kharkar, P.M., Kiick, K.L., and Akins, R.E.: Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells. Biomaterials 62, 2434 (2015).
53.Peters, E.B., Christoforou, N., Leong, K.W., Truskey, G.A., and West, J.L.: Poly(ethylene glycol) hydrogel scaffolds containing cell-adhesive and protease-sensitive peptides support microvessel formation by endothelial progenitor cells. Cell. Mol. Bioeng. 9, 3854 (2016).
54.Mabry, K.M., Lawrence, R.L., and Anseth, K.S.: Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials 49, 4756 (2015).
55.Singh, S.P., Schwartz, M.P., Lee, J.Y., Fairbanks, B.D., and Anseth, K.S.: A peptide functionalized poly(ethylene glycol) (PEG) hydrogel for investigating the influence of biochemical and biophysical matrix properties on tumor cell migration. Biomater. Sci. 2, 1024 (2014).
56.Soman, P., Kelber, J.A., Lee, J.W., Wright, T.N., Vecchio, K.S., Klemke, R.L., and Chen, S.: Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials 33, 70647070 (2012).
57.Sunyer, R., Jin, A.J., Nossal, R., and Sackett, D.L.: Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS ONE 7, e46107 (2012).
58.Yang, C., DelRio, F.W., Ma, H., Killaars, A.R., Basta, L.P., Kyburz, K.A., and Anseth, K.S.: Spatially patterned matrix elasticity directs stem cell fate. Proc. Natl. Acad. Sci. 113, E4439E4445 (2016).
59.Hahn, M.S., Miller, J.S., and West, J.L.: Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater. 18, 26792684 (2006).
60.Nemir, S., Hayenga, H.N., and West, J.L.: PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105, 636644 (2010).
61.Ma, Y., Lin, M., Huang, G., Li, Y., Wang, S., Bai, G., Lu, T.J., and Xu, F.: 3D spatiotemporal mechanical microenvironment: a hydrogel-based platform for guiding stem cell fate. Adv. Mater. 30, 1705911 (2018).
62.Kloxin, A.M., Kloxin, C.J., Bowman, C.N., and Anseth, K.S.: Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22, 34843494 (2010).
63.Kloxin, A.M., Tibbitt, M.W., Kasko, A.M., Fairbairn, J.A., and Anseth, K.S.: Tunable hydrogels for external manipulation of cellular microenvironments through controlled photodegradation. Adv. Mater. 22, 6166 (2010).
64.Sletten, E.M. and Bertozzi, C.R.: Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 69746998 (2009).
65.Wu, X., Huang, W., Wu, W.-H., Xue, B., Xiang, D., Li, Y., Qin, M., Sun, F., Wang, W., Zhang, W.-B., and Cao, Y.: Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 11, 55565565 (2018).
66.Norris, S.C.P., Tseng, P., and Kasko, A.M.: Direct gradient photolithography of photodegradable hydrogels with patterned stiffness control with submicrometer resolution. ACS Biomater. Sci. Eng. 2, 13091318 (2016).
67.Desmouliere, A., Darby, I.A., Laverdet, B., and Bonté, F.: Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7, 301 (2014).
68.Hughes, A.J., Miyazaki, H., Coyle, M.C., Zhang, J., Laurie, M.T., Chu, D., Vavrušová, Z., Schneider, R.A., Klein, O.D., and Gartner, Z.J.: Engineered tissue folding by mechanical compaction of the mesenchyme. Dev. Cell 44, 165178.e6 (2018).
69.Merceron, T.K., Burt, M., Seol, Y.-J., Kang, H.-W., Lee, S.J., Yoo, J.J., and Atala, A.: A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication. 7, 035003 (2015).
70.Skardal, A., Devarasetty, M., Kang, H.-W., Mead, I., Bishop, C., Shupe, T., Lee, S.J., Jackson, J., Yoo, J., Soker, S., and Atala, A.: A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 25, 2434 (2015).
71.Kolesky, D.B., Truby, R.L., Gladman, A.S., Busbee, T.A., Homan, K.A., and Lewis, J.A.: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 31243130 (2014).
72.Ma, X., Qu, X., Zhu, W., Li, Y.-S., Yuan, S., Zhang, H., Liu, J., Wang, P., Lai, C.S.E., Zanella, F., Feng, G.-S., Sheikh, F., Chien, S., and Chen, S.: Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. 113, 22062211 (2016).
73.Soman, P., Chung, P.H., Zhang, A.P., and Chen, S.: Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels: 3D microstructures in cell-laden hydrogels. Biotechnol. Bioeng. 110, 30383047 (2013).
74.Randall, C.L., Gultepe, E., and Gracias, D.H.: Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30, 138146 (2012).
75.Guan, J., He, H., Hansford, D.J., and Lee, L.J.: Self-Folding of three-dimensional hydrogel microstructures. J. Phys. Chem. B 109, 2313423137 (2005).
76.Yoon, C., Xiao, R., Park, J., Cha, J., Nguyen, T.D., and Gracias, D.H.: Functional stimuli responsive hydrogel devices by self-folding. Smart Mater. Struct. 23, 094008 (2014).
77.Naficy, S., Gately, R., Gorkin, R., Xin, H., and Spinks, G.M.: 4D printing of reversible shape morphing hydrogel structures. Macromol. Mater. Eng. 302, 1600212 (2017).
78.Kwag, H.R., Serbo, J.V., Korangath, P., Sukumar, S., Romer, L.H., and Gracias, D.H.: A self-folding hydrogel in vitro model for ductal carcinoma. Tissue Eng. Part C Methods 22, 398407 (2016).
79.Kuribayashi-Shigetomi, K., Onoe, H., and Takeuchi, S.: Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force. PLoS ONE 7, e51085 (2012).
80.Bassik, N., Stern, G.M., Jamal, M., and Gracias, D.H.: Patterning thin film mechanical properties to drive assembly of complex 3D structures. Adv. Mater. 20, 47604764 (2008).
81.Bae, J., Na, J.-H., Santangelo, C.D., and Hayward, R.C.: Edge-defined metric buckling of temperature-responsive hydrogel ribbons and rings. Polymer 55, 59085914 (2014).
82.Li, T., Wang, J., Zhang, L., Yang, J., Yang, M., Zhu, D., Zhou, X., Handschuh-Wang, S., Liu, Y., and Zhou, X.: “Freezing”, morphing, and folding of stretchy tough hydrogels. J. Mater. Chem. B 5, 57265732 (2017).
83.Jeon, S.-J., Hauser, A.W., and Hayward, R.C.: Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50, 161169 (2017).
84.Park, S.-J., Gazzola, M., Park, K.S., Park, S., Di Santo, V., Blevins, E.L., Lind, J.U., Campbell, P.H., Dauth, S., Capulli, A.K., Pasqualini, F.S., Ahn, S., Cho, A., Yuan, H., Maoz, B.M., Vijaykumar, R., Choi, J.-W., Deisseroth, K., Lauder, G.V., Mahadevan, L., and Parker, K.K.: Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158162 (2016).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed