Skip to main content Accessibility help
×
×
Home

CNT flexible membranes for energy storage and conversion systems

  • Kofi Adu (a1) (a2), Ramakrishnan Rajagopalan (a2) (a3), Cullen Kaschalk (a4) and Clive Randall (a2) (a5)

Abstract

We have successfully employed a charge transfer mechanism to convert carbon nanotube (CNT) powder into CNT flexible membrane with no binder. We have demonstrated the use of the CNT membranes as electrode in a stacked bipolar solid-state capacitor using grafoil as current collector that showed 80% capacitance retention over 10,000 cycles at 70 °C. The CNT membranes could have potential application in catalysis, photovoltaic, thermoelectric, and many others.

Copyright

Corresponding author

Address all correspondence to Kofi Adu at cxa269@psu.edu

References

Hide All
1.IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013), 1535 pp., https://unfccc.int/
2.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 5658 (1991).
3.Dai, H.J., Javey, A., Pop, E., Mann, D., and Kim, W.: Electrical transport properties and field effect transistors of carbon nanotubes. Nano 1, 113 (2006).
4.Pop, E., Mann, D., Wang, Q., Goodson, K.E., and Dai, H.J.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96100 (2006).
5.Ruoff, R.S., Qian, D., and Liu, W.K.: Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys. 4, 9931008 (2003).
6.Baughman, R.H., Zakhidov, A.A., and de Heer, W.A.: Carbon nanotubes - the route toward applications. Science 297, 787792 (2002).
7.Yu, C.H., Shi, L., Yao, Z., Li, D.Y., and Majumdar, A.: Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 18421846 (2005).
8.Kim, P., Shi, L., Majumdar, A., and McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phy. Rev. Lett. 87, 215502/1–4 (2001).
9.Ng, S.H., Wang, J., Guo, Z.P., Chen, J., Wang, G.X., and Liu, H.K.: Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 2328 (2005).
10.Futaba, D.N., Hata, K., Yamada, T., Haraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., and Iijima, S.: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987994 (2006).
11.Dresselhaus, M.S., Dresselhaus, G., and Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, USA, 1995).
12.Jiang, L.C. and Zhang, W.D.: A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 14021407 (2010).
13.Zhang, C.H., Wang, G.F., Ji, Y.L., Liu, M., Feng, Y.H., Zhang, Z.D., and Fang, B.. Enhancement in analytical hydrazine based on gold nanoparticles deposited on ZnO-MWCNTs films. Sens. Actuators B-Chem. 150, 247253 (2010).
14.Zhang, C.H., Wang, G.F., Ji, Y.L., Liu, M., Feng, Y.H., Zhang, Z.D., and Fang, B.: A hydroxylamine electrochemical sensor based on electrodeposition of porous ZnO nanofilms onto carbon nanotubes films modified electrode. Electrochim. Acta. 55, 28352840 (2010).
15.Rakhi, R.B., Sethupathi, K., and Ramaprabhu, S.: A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J. Phys. Chem. B 113, 31903194 (2009).
16.Snow, E.S. and Perkins, F.K.: Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett. 5, 24142417 (2005).
17.Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., and Reinecke, T.L.: Chemical detection with a single-walled carbon nanotube capacitor. Science 307, 19421945 (2005).
18.Chen, R.J., Zhang, Y.G., Wang, D.W., and Dai, H.J.: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 38383839 (2001).
19.Xu, B.X., Qiao, Y., Zhou, Q.L., and Chen, X.: Effect of electric field on liquid infiltration into hydrophobic nanopores. Langmuir 27, 63496357 (2011).
20.Rao, A.M., Bandow, S., Richter, E., and Eklund, P.C.: Raman spectroscopy of pristine and doped single wall carbon nanotubes. Thin Solid Films 331, 141147 (1998).
21.Adu, K., Ma, D., Wang, Y., Spencer, M., Rajagopalan, R., Wang, C.Y., and Randall, C.: Flexible robust binder-free carbon nanotube membranes fo solid state and microcapacitor application. Nanotechnology 29, 035605/1–13 (2018).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Adu et al. supplementary material
Tables S1 and S2

 Word (962 KB)
962 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed