Skip to main content Accessibility help
×
Home

Characterization of interface thermal resistance between graphene and Cu film by using a micropipette thermography technique

  • Jae Young Jeong (a1), Kyle Horne (a2), Bohung Kim (a3), Dongsik Kim (a4) and Tae-Youl Choi (a1)...

Abstract

We have investigated interfacial thermal resistance (ITR) between single-layer graphene and Cu substrate by using both experimental and numerical methods. For experiments, the micropipette sensing technique was utilized to measure the thermal conductivity of suspended graphene and temperature profile of supported graphene on Cu film subjected to heating with a point source continuous wave laser. The thermal conductivity of suspended single-layer graphene was measured to be 3492 ± 453 W/m°C from measurements of temperature profile on the suspended graphene. This intrinsic graphene thermal conductivity and the finite element method integrated with a multi-parameter fitting technique were used to estimate ITR between graphene and Cu film. In the multi-parameter fitting technique, the simulated temperature profile is compared with experimentally measured temperature profile on the supported graphene surface and the best-fitted parameters including thermal interface resistance was obtained. The estimated interface thermal resistance between single graphene and Cu substrate is 2.3 × 10−7 m2 K/W and the difference between experiment and simulation result during multi-parameter fitting is 6.9%.

Copyright

Corresponding author

Address all correspondence to Tae-Youl Choi at tae-youl.choi@unt.edu, web site: http://engineering.unt.edu/mechanicalandenergy

References

Hide All
1.Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., and Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
2.Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J.A., and Geim, A.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phy. Rev. Lett. 100, 016602 (2008).
3.Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
4.Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).
5.Ghosh, D., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. App. Phy. Lett. 92, 151911 (2008).
6.Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., and Ruoff, R.S.: Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203 (2012).
7.Wang, Z., Xie, R., Bui, C.T., Liu, D., Ni, X., Li, B., and Thong, J.T.: Thermal transport in suspended and supported few-layer graphene. Nano Lett. 11, 113 (2010).
8.Fugallo, G., Cepellotti, A., Paulatto, L., Lazzeri, M., Marzari, N., and Mauri, F.: Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14, 6109 (2014).
9.Yue, Y., Zhang, J., and Wang, X.: Micro/Nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 7, 3324 (2011).
10.Koh, Y.K., Bae, M.-H., Cahill, D.G., and Pop, E.: Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363 (2010).
11.Chen, Z., Jang, W., Bao, W., Lau, C., and Dames, C.: Thermal contact resistance between graphene and silicon dioxide. App. Phy. Lett. 95, 161910 (2009).
12.Mao, R., Kong, B.D., Kim, K.W., Jayasekera, T., Calzolari, A., and Buongiorno Nardelli, M.: Phonon engineering in nanostructures: Controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions. App. Phy. Lett. 101, 113111 (2012).
13.Luo, T., and Lloyd, J.R.: Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv. Func. Mater. 22, 2495 (2012).
14.Shrestha, R., Lee, K., Chang, W., Kim, D., Rhee, G., and Choi, T.: Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor. Rev. Sci. Instr. 84, 034901 (2013).
15.Jeong, J., Lee, K., Shrestha, R., Horne, K., Das, S., Choi, W., Kim, M., and Choi, T.: Thermal conductivity measurement of few layer graphene film by a micropipette sensor with laser point heating source. Mater. Res. Exp. 3, 055004 (2016).
16.Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E.: Convergence properties of the Nelder--Mead simplex method in low dimensions. SIAM J. Opt. 9, 112 (1998).
17.Holman, J.P., and Gajda, W.J.: Experimental Methods For Engineers (McGraw-Hill, New York 2001).
18.Moftakhari, A., Aghanajafi, C., and Moftakhari Chaei Ghazvin, A.: Inverse heat transfer analysis of radiator central heating systems inside residential buildings using sensitivity analysis. Inv. Prob. Sci. Eng. 25, 580 (2017).
19.Ferrari, A.C., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K., and Roth, S.: Raman spectrum of graphene and graphene layers. Phy. Rev. Lett. 97, 187401 (2006).
20.Serov, A.Y., Ong, Z.-Y., and Pop, E.: Effect of grain boundaries on thermal transport in graphene. App. Phy. Lett. 102, 033104 (2013).
21.Limbu, T.B., Hahn, K.R., Mendoza, F., Sahoo, S., Razink, J.J., Katiyar, R.S., Weiner, B.R., and Morell, G.: Grain size-dependent thermal conductivity of polycrystalline twisted bilayer graphene. Carbon. N. Y. 117, 367 (2017).
22.Hao, F., Fang, D., and Xu, Z.: Mechanical and thermal transport properties of graphene with defects. App. Phy. Lett. 99, 041901 (2011).
23.Chien, S.-K. and Yang, Y.-T.: Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon. N. Y. 50, 421 (2012).
24.Alemán, B., Regan, W., Aloni, S., Altoe, V., Alem, N., Girit, C.l, Geng, B., Maserati, L., Crommie, M., and Wang, F.: Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4, 4762 (2010).
Type Description Title
WORD
Supplementary materials

Jeong et al. supplementary material
Jeong et al. supplementary material 1

 Word (138 KB)
138 KB

Characterization of interface thermal resistance between graphene and Cu film by using a micropipette thermography technique

  • Jae Young Jeong (a1), Kyle Horne (a2), Bohung Kim (a3), Dongsik Kim (a4) and Tae-Youl Choi (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed