Skip to main content Accessibility help

Challenges and opportunities of polymer design with machine learning and high throughput experimentation

  • Jatin N. Kumar (a1), Qianxiao Li (a2) and Ye Jun (a2)


In this perspective, the authors challenge the status quo of polymer innovation. The authors first explore how research in polymer design is conducted today, which is both time consuming and unable to capture the multi-scale complexities of polymers. The authors discuss strategies that could be employed in bringing together machine learning, data curation, high-throughput experimentation, and simulations, to build a system that can accurately predict polymer properties from their descriptors and enable inverse design that is capable of designing polymers based on desired properties.


Corresponding author

*Address all correspondence to Jatin N. Kumar at and


Hide All
1.Gregory, A. and Stenzel, M.H.: Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog. Polym. Sci. 37, 38 (2012).
2.Garcia, S.J.: Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 53, 118 (2014).
3.Rinkenauer, A.C., Schubert, S., Traeger, A. and Schubert, U.S.: The influence of polymer architecture on in vitro pDNA transfection. J. Mater. Chem. B 3, 7477 (2015).
4.Dag, A., Callari, M., Lu, H. and Stenzel, M.H.: Modulating the cellular uptake of platinum drugs with glycopolymers. Polymer Chemistry 7, 1031 (2016).
5.Paramelle, D., Gorelik, S., Liu, Y. and Kumar, J.: Photothermally responsive gold nanoparticle conjugated polymer-grafted porous hollow silica nanocapsules. Chem. Commun. 52, 9897 (2016).
6.Kumar, J., Bousquet, A. and Stenzel, M.H.: Thiol-alkyne Chemistry for the Preparation of Micelles with Glycopolymer Corona: Dendritic Surfaces versus Linear Glycopolymer in Their Ability to Bind to Lectins. Macromol. Rapid Commun. 32, 1620 (2011).
7.Kumar, J., McDowall, L., Chen, G. and Stenzel, M.H.: Synthesis of thermo-responsive glycopolymersviacopper catalysed azide-alkyne ‘click’ chemistry for inhibition of ricin: the effect of spacer between polymer backbone and galactose. Polymer Chemistry 2, 1879 (2011).
8.Correa-Baena, J.-P., Hippalgaonkar, K., van Duren, J., Jaffer, S., Chandrasekhar, V.R., Stevanovic, V., Wadia, C., Guha, S. and Buonassisi, T.: Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing. Joule 2, 1410 (2018).
9.Bicerano, J.: Prediction of Polymer Properties, (Taylor & Francis Inc, Bosa Roca, United States, 2002).
10.Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. and Minko, S.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101 (2010).
11.Jiang, R., Jin, Q., Li, B., Ding, D. and Shi, A.-C.: Phase Diagram of Poly(ethylene oxide) and Poly(propylene oxide) Triblock Copolymers in Aqueous Solutions. Macromolecules 39, 5891 (2006).
12.Ashbaugh, H.S. and Paulaitis, M.E.: Monomer Hydrophobicity as a Mechanism for the LCST Behavior of Poly(ethylene oxide) in Water. Ind. Eng. Chem. Res. 45, 5531 (2006).
13.Halperin, A., Kröger, M. and Winnik, F.M.: Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem. Int. Ed. 54, 15342 (2015).
14.Hoogenboom, R., Thijs, H.M.L., Jochems, M.J.H.C., van Lankvelt, B.M., Fijten, M.W.M. and Schubert, U.S.: Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem. Commun. 0, 5758 (2008).
15.Odian, G.: Principles of Polymerization, Fourth Edition ed. (John Wiley & Sons, New York, United States, 2004).
16.Smith, J.S., Isayev, O. and Roitberg, A.E.: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci 8, 3192 (2017).
17.Anderson, T.W.: An Introduction To Multivariate Statistical Analysis, (Wiley, New York, 1958).
18.Box, G.E.P. and Tiao, G.C.: Bayesian Inference in Statistical Analysis, (John Wiley & Sons, New York, United States, 2011).
19.Cortes, C. and Vapnik, V.: Support-Vector Networks. Machin. Learn. 20, 273 (1995).
20.Rokach, L. and Maimon, O.: Data Mining With Decision Trees: Theory and Applications, (World Scientific Publishing Co., Inc.2014).
21.LeCun, Y., Bengio, Y. and Hinton, G.: Deep learning. Nature 521, 436 (2015).
22.Friedman, J.H.: Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 29, 1189 (2001).
23.Aseyev, V., Tenhu, H. and Winnik, F.M.: Non-ionic Thermoresponsive Polymers in Water, in Self Organized Nanostructures of Amphiphilic Block Copolymers II, edited by Müller, A. H. E. and Borisov, O. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011), pp. 29.
24.Wei, J.N., Duvenaud, D. and Aspuru-Guzik, A.: Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci 2, 725 (2016).
25.Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T.D., Duvenaud, D., Maclaurin, D., Blood-Forsythe, M.A., Chae, H.S., Einzinger, M., Ha, D.-G., Wu, T., Markopoulos, G., Jeon, S., Kang, H., Miyazaki, H., Numata, M., Kim, S., Huang, W., Hong, S.I., Baldo, M., Adams, R.P. and Aspuru-Guzik, A.: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120 (2016).
26.Häse, F., Kreisbeck, C. and Aspuru-Guzik, A.: Machine learning for quantum dynamics: deep learning of excitation energy transfer properties. Chem. Sci 8, 8419 (2017).
27.Benjamin, S.-L., Carlos, O., Gabriel L., G. and Alan, A.-G.: Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC), (ChemRxiv, 2017), p. 10.26434/chemrxiv.5309668.v3.
28.Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gomez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A. and Adams, R.P.: Convolutional networks on graphs for learning molecular fingerprints, in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 (MIT Press, Montreal, Canada, 2015), pp. 2224.
29.Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P. and Aspuru-Guzik, A.: Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci 4, 268 (2018).
30.Huan, T.D., Mannodi-Kanakkithodi, A., Kim, C., Sharma, V., Pilania, G. and Ramprasad, R.: A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).
31.Mannodi-Kanakkithodi, A., Pilania, G., Huan, T.D., Lookman, T. and Ramprasad, R.: Machine Learning Strategy for Accelerated Design of Polymer Dielectrics. Sci. Rep. 6, 20952 (2016).
32.Kim, C., Chandrasekaran, A., Huan, T.D., Das, D. and Ramprasad, R.: Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions. J. Phys. Chem. C 122, 17575 (2018).
33.Zeng, M., Kumar, J.N., Zeng, Z., Ramasamy, S., Chandrasekhar, V.R. and Hippalgaonkar, K.: Graph Convolutional Neural Networks for Polymers Property Prediction. arXiv, 1811.06231 (2018).
34.Wei, Q., Melko, R.G. and Chen, J.Z.Y.: Identifying polymer states by machine learning. Physical Review E 95, 032504 (2017).
35.Kumar, J., Li, Q., Tang, K.Y.T., Buonassisi, T., Gonzalez-Oyarce, A.L. and Ye, J.: Machine Learning Enables Polymer Cloud-Point Engineering via Inverse Design, (ChemRxiv, 2018), p. 10.26434/chemrxiv.7528343.v1.
36.Luca, M.G., Jan, V., Emre, A., Runhai, O., Sergey, V.L., Claudia, D. and S. Matthias: Learning physical descriptors for materials science by compressed sensing. New Journal of Physics 19, 023017 (2017).
37.Dünweg, B. and Kremer, K.: Molecular dynamics simulation of a polymer chain in solution. The Journal of Chemical Physics 99, 6983 (1993).
38.Groot, R.D. and Warren, P.B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of Chemical Physics 107, 4423 (1997).
39.Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L. and Grubmüller, H.: Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. Journal of Computational Chemistry 36, 1990 (2015).
40.Oliver, S., Zhao, L., Gormley, A.J., Chapman, R. and Boyer, C.: Living in the Fast Lane—High Throughput Controlled/Living Radical Polymerization. Macromolecules 52, 3 (2018).
41.Nikolaev, P., Hooper, D., Webber, F., Rao, R., Decker, K., Krein, M., Poleski, J., Barto, R. and Maruyama, B.: Autonomy in materials research: a case study in carbon nanotube growth. Npj Computational Materials 2, 16031 (2016).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed