Skip to main content Accessibility help

Cellulose-based electroactive hydrogels for seaweed mimicking toward hybrid artificial habitats creation

  • Lorenzo Migliorini (a1), Yunsong Yan (a2), Federico Pezzotta (a2), Francesca Maria Sole Veronesi (a2), Cristina Lenardi (a2), Sandra Rondinini (a3), Tommaso Santaniello (a2) and Paolo Milani (a2)...


We present the synthesis and the characterization of a novel cellulose-based electroactive hydrogel obtained through a simple water-based process. Its swelling and electroactive properties are here studied especially in low salinity water solutions. By combining smart materials and three-dimensional printing technique, we assessed that hydrogels can be shaped as natural algae and their motion can be controlled with electric signals to mimic natural seaweed movements under the effect of water flow. This could constitute a first step toward the development of hybrid habitats where artificial smart algae could cohabit with real living organisms or microorganisms.


Corresponding author

Address all correspondence to Tommaso Santaniello at and Paolo Milani at


Hide All

These authors contributed equally to the work.



Hide All
1.Maréchal, J. P. and Hellio, C.: Challenges for the development of new non-toxic antifouling solutions. Int. J. Mol. Sci. 10, 46234637 (2009).
2.Chapman, J., Hellio, C., Sullivan, T., Brown, R., Russell, S., Kiterringham, E., Le Nor, L., and Regan, F.: Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int. Biodeterior. Biodegrad. 86, 613 (2014).
3.Tamiya, H.: Mass culture of Algae. Annu. Rev. Plant Physiol. J. 8, 309344 (1957).
4.Edgar, G. J.: Artificial algae as habitats for mobile epifauna: factors affecting colonization in a Japanese Sargassum bed. Hydrobiologia 226, 111118 (1991).
5.Uymaz, S. A., Tezel, G., and Yel, E.: Artificial algae algorithm (AAA) for nonlinear global optimization. Appl. Soft Comput. J. 31, 153171 (2015).
6.Ryder, E., Nelson, S. G., McKeon, C., Glenn, E. P., Fitzsimmons, K., and Napolean, S.: Effect of water motion on the cultivation of the economic seaweed Gracilaria parvispora (Rhodophyta) on Molokai, Hawaii. Aquaculture 238, 207219 (2004).
7.Peteiro, C. and Freire, Ó.: Effect of water motion on the cultivation of the commercial seaweed Undaria pinnatifida in a coastal bay of Galicia, Northwest Spain. Aquaculture 314, 269276 (2011).
8.Hepburn, C. D., Holborow, J. D., Wing, S. R., Frew, R. D., and Hurd, C. L.: Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 339, 99108 (2007).
9.Hurd, C. L.: Water motion, marine macroalgal physiology, and production. J. Phycol. 36, 453472 (2000).
10.Olanrewaju, S. O., Magee, A., Kader, A. S. A., and Tee, K. F.: Simulation of offshore aquaculture system for macro algae (seaweed) oceanic farming. Ships Offshore Struct. 12, 553562 (2017).
11.Leigh, E. G., Paine, R. T., Quinn, J. F., and Suchanek, T. H.: Wave energy and intertidal productivity. Proc. Natl. Acad. Sci. 84, 13141318 (1987).
12.Gonen, Y., Kimmel, E., and Friedlander, M.: Diffusion boundary layer transport in Gracilaria conferta (Rhodophyta). J. Phycol. 31, 768773 (1995).
13.Hoffman, A. S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 1823 (2012).
14.Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 13451360 (2006).
15.Lee, K. Y. and Mooney, D. J.: Hydrogels for tissue engineering. Chem. Rev. 101, 18691879 (2001).
16.Doi, M., Matsumoto, M., and Hirose, Y.: Deformation of ionic polymer gels by electric fields. Macromolecules 25, 55045511 (1992).
17.Glazer, P. J., Van Erp, M., Embrechts, A., Lemay, S. G., and Mendes, E.: Role of pH gradients in the actuation of electro-responsive polyelectrolyte gels. Soft Matter 8, 44214426 (2012).
18.Kwon, G. H., Choi, Y. Y., Park, J. Y., Woo, D. H., Lee, K. B., Kim, J. H., and Lee, S. H.: Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application. Lab. Chip. 10, 16041610 (2010).
19.Jin, S., Gu, J., Shi, Y., Shao, K., Yu, X., and Yue, G.: Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur. Polym. J. 49, 18711880 (2013).
20.Engel, L., Berkh, O., Adesanya, K., Shklovsky, J., Vanderleyden, E., Dubruel, P., Shacham-Diamand, Y., and Krylov, S.: Actuation of a novel pluronic-based hydrogel: electromechanical response and the role of applied current. Sens. Actuators B Chem. 191, 650658 (2014).
21.Migliorini, L., Santaniello, T., Yan, Y., Lenardi, C., and Milani, P.: Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics. Sens. Actuators B Chem. 228, 758766 (2016).
22.Santaniello, T., Migliorini, L., Locatelli, E., Monaco, I., Yan, Y., Lenardi, C., Comes Franchini, M., and Milani, P.: Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro–mechanical underwater actuation. Smart Mater. Struct. 26, 085030 (2017).
23.Jayaramudu, T., Ko, H. U., Kim, H. C., Kim, J. W., Li, Y., and Kim, J.: Transparent and semi-interpenetrating network P(vinyl alcohol)-P(Acrylic acid) hydrogels: pH responsive and electroactive application. Int. J. Smart Nano Mater. 8, 8094 (2017).
24.Fu, F., Shang, L., Chen, Z., Yu, Y., and Zhao, Y.: Bioinspired living structural color hydrogels. Sci. Robot. 3, eaar8580 (2018).
25.Tian, K., Shao, Z., and Chen, X.: Natural electroactive hydrogel from soy protein isolation. Biomacromolecules 11, 36383643 (2010).
26.Chang, C. and Zhang, L.: Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym. 84, 4053 (2011).
Type Description Title
Supplementary materials

Migliorini et al. supplementary material
Migliorini et al. supplementary material 1

 Unknown (23.8 MB)
23.8 MB

Cellulose-based electroactive hydrogels for seaweed mimicking toward hybrid artificial habitats creation

  • Lorenzo Migliorini (a1), Yunsong Yan (a2), Federico Pezzotta (a2), Francesca Maria Sole Veronesi (a2), Cristina Lenardi (a2), Sandra Rondinini (a3), Tommaso Santaniello (a2) and Paolo Milani (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed