Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T06:53:30.954Z Has data issue: false hasContentIssue false

Catalytic polymeric nanoreactors: more than a solid supported catalyst

Published online by Cambridge University Press:  30 October 2012

Pepa Cotanda
Affiliation:
Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
Nikos Petzetakis
Affiliation:
Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
Rachel K. O'Reilly*
Affiliation:
Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
*
Address all correspondence to Rachel K. O'Reilly at R.K.O-Reilly@warwick.ac.uk
Get access

Abstract

Polymeric nanostructures can be synthesized where the catalytic motif is covalently attached within the core domain and protected from the environment by a polymeric shell. Such nanoreactors can be easily recycled, and have shown unique properties when catalyzing reactions under pseudohomogeneous conditions. Many examples of how these catalytic nanostructures can act as nanosized reaction vessels have been reported in the literature. This prospective will focus on the exclusive features observed for these catalytic systems and highlight their potential as enzyme mimics, as well as the importance of further studies to unveil their full potential.

Type
Prospective Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Merrifield, R.B.: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149 (1963).CrossRefGoogle Scholar
2. Madhavan, N., Jones, C.W., and Weck, M.: Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design. Acc. Chem. Res. 41, 1153 (2008).CrossRefGoogle ScholarPubMed
3. Clapham, B., Reger, T.S., and Janda, K.D.: Polymer-supported catalysis in synthetic organic chemistry. Tetrahedron 57, 4637 (2001).CrossRefGoogle Scholar
4. Hodge, P.: Polymer-supported organic reactions: what takes place in the beads? Chem. Soc. Rev. 26, 417 (1997).CrossRefGoogle Scholar
5. Sherrington, D.C.: Polymer-supported reagents, catalysts, and sorbents: evolution and exploitation - A personalized view. J. Polym. Sci., Part A: Polym. Chem. 39, 2364 (2001).CrossRefGoogle Scholar
6. Nuyken, O., Persigehl, P., and Weberskirch, R.: Amphiphilic poly(oxazoline)s - synthesis and application for micellar catalysis. Macromol. Symp. 177, 163 (2002).3.0.CO;2-W>CrossRefGoogle Scholar
7. Mason, B.P., Hira, S.M., Strouse, G.F., and McQuade, D.T.: Microcapsules with three orthogonal reactive sites. Org. Lett. 11, 1479 (2009).CrossRefGoogle ScholarPubMed
8. Chi, Y.G., Scroggins, S.T., and Frechet, J.M.J.: One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J. Am. Chem. Soc. 130, 6322 (2008).CrossRefGoogle ScholarPubMed
9. Perrier, S. and Takolpuckdee, P.: Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J. Polym. Sci., Part A: Polym. Chem. 43, 5347 (2005).CrossRefGoogle Scholar
10. Matyjaszewski, K. and Xia, J.H.: Atom transfer radical polymerization. Chem. Rev. 101, 2921 (2001).CrossRefGoogle ScholarPubMed
11. Benoit, D., Chaplinski, V., Braslau, R., and Hawker, C.J.: Development of a universal alkoxyamine for “living” free radical polymerizations. J. Am. Chem. Soc. 121, 3904 (1999).CrossRefGoogle Scholar
12. Szwarc, M.: “Living” polymers. Nature 178, 1168 (1956).CrossRefGoogle Scholar
13. Thurmond, K.B., Kowalewski, T., and Wooley, K.L.: Water-soluble knedel-like structures: the preparation of shell-cross-linked small particles. J. Am. Chem. Soc. 118, 7239 (1996).CrossRefGoogle Scholar
14. Matyjaszewski, K. and Tsarevsky, N.V.: Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chem. 1, 276 (2009).CrossRefGoogle ScholarPubMed
15. Gregory, A. and Stenzel, M.H.: Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature's building blocks. Prog. Polym. Sci. 37, 38 (2012).CrossRefGoogle Scholar
16. Bosman, A.W., Vestberg, R., Heumann, A., Fréchet, J.M.J., and Hawker, C.J.: A modular approach toward functionalized three-dimensional macromolecules:  from synthetic concepts to practical applications. J. Am. Chem. Soc. 125, 715 (2002).Google Scholar
17. Hawker, C.J.: “Living” free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures. Acc. Chem. Res. 30, 373 (1997).CrossRefGoogle Scholar
18. Wang, J.S. and Matyjaszewski, K.: Controlled living radical polymerization - halogen atom-transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28, 7901 (1995).Google Scholar
19. Hawker, C.J., Barclay, G.G., Orellana, A., Dao, J., and Devonport, W.: Initiating systems for nitroxide-mediated “living” free radical polymerizations: synthesis and evaluation. Macromolecules 29, 5245 (1996).CrossRefGoogle Scholar
20. Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le, T.P.T., Mayadunne, R.T.A., Meijs, G.F., Moad, C.L., Moad, G., Rizzardo, E., and Thang, S.H.: Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559 (1998).CrossRefGoogle Scholar
21. Braunecker, W.A. and Matyjaszewski, K.: Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 32, 93 (2007).CrossRefGoogle Scholar
22. Sheldon, R.A.: Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7, 267 (2005).CrossRefGoogle Scholar
23. Gruttadauria, M., Giacalone, F., and Noto, R.: Water in stereoselective organocatalytic reactions. Adv. Synth. Catal. 351, 33 (2009).CrossRefGoogle Scholar
24. Vriezema, D.M., Aragones, M.C., Elemans, J.A.A.W., Cornelissen, J.J.L.M., Rowan, A.E., and Nolte, R.J.M.: Self-assembled nanoreactors. Chem. Rev. 105, 1445 (2005).CrossRefGoogle ScholarPubMed
25. Helms, B. and Fréchet, J.M.J.: The dendrimer effect in homogeneous catalysis. Adv. Synth. Catal. 348, 1125 (2006).CrossRefGoogle Scholar
26. McHale, R., Patterson, J.P., Zetterlund, P.B., and O'Reilly, R.K.: Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chem. 4, 491 (2012).CrossRefGoogle ScholarPubMed
27. Cotanda, P. and O'Reilly, R.K.: Molecular recognition driven catalysis using polymeric nanoreactors. Chem. Commun. 48, 10280–10282 (2012). DOI: 10.1039/C2CC35655D CrossRefGoogle ScholarPubMed
28. Lu, A., Cotanda, P., Patterson, J.P., Longbottom, D.A., and O'Reilly, R.K.: Aldol reactions catalyzed by l-proline functionalized polymeric nanoreactors in water. Chem. Commun. 48, 9699 (2012).CrossRefGoogle ScholarPubMed
29. Arumugam, S., Vutukuri, D.R., Thayumanavan, S., and Ramamurthy, V.: Amphiphilic homopolymer as a reaction medium in water:  product selectivity within polymeric nanopockets. J. Am. Chem. Soc. 127, 13200 (2005).CrossRefGoogle ScholarPubMed
30. Liu, Y., Wang, Y., Wang, Y., Lu, J., Piñón, V., and Weck, M.: Shell cross-linked micelle-based nanoreactors for the substrate-selective hydrolytic kinetic resolution of epoxides. J. Am. Chem. Soc. 133, 14260 (2011).Google ScholarPubMed
31. Cotanda, P., Lu, A., Patterson, J.P., Petzetakis, N., and O'Reilly, R.K.: Functionalized organocatalytic nanoreactors: hydrophobic pockets for acylation reactions in water. Macromolecules 45, 2377 (2012).CrossRefGoogle Scholar
32. Wooley, K.L.: Shell crosslinked polymer assemblies: nanoscale constructs inspired from biological systems. J. Polym. Sci., Part A: Polym. Chem. 38, 1397 (2000).3.0.CO;2-N>CrossRefGoogle Scholar
33. Nicolai, T., Colombani, O., and Chassenieux, C.: Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 6, 3111 (2010).CrossRefGoogle Scholar
34. Gall, B., Bortenschlager, M., Nuyken, O., and Weberskirch, R.: Cascade reactions in polymeric nanoreactors: mono (Rh)- and bimetallic (Rh/Ir) micellar catalysis in the hydroaminomethylation of 1-octene. Macromol. Chem. Phys. 209, 1152 (2008).CrossRefGoogle Scholar
35. Persigehl, P., Jordan, R., and Nuyken, O.: Functionalization of amphiphilic poly(2-oxazoline) block copolymers: a novel class of macroligands for micellar catalysis. Macromolecules 33, 6977 (2000).CrossRefGoogle Scholar
36. Zarka, M.T., Nuyken, O., and Weberskirch, R.: Amphiphilic polymer supports for the asymmetric hydrogenation of amino acid precursors in water. Chem. Eur. J. 9, 3228 (2003).CrossRefGoogle ScholarPubMed
37. Ievins, A.D., Wang, X.F., Moughton, A.O., Skey, J., and O'Reilly, R.K.: Synthesis of core functionalized polymer micelles and shell cross-linked nanoparticles. Macromolecules 41, 2998 (2008).CrossRefGoogle Scholar
38. Rossbach, B.M., Leopold, K., and Weberskirch, R.: Self-assembled nanoreactors as highly active catalysts in the hydrolytic kinetic resolution (HKR) of epoxides in water. Angew. Chem., Int. Ed. 45, 1309 (2006).CrossRefGoogle ScholarPubMed
39. Ge, Z.S., Xie, D., Chen, D., Jiang, X., Zhang, Y., Liu, H., and Liu, S.: Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity. Macromolecules 40, 3538 (2007).CrossRefGoogle Scholar
40. O'Lenick, T.G., Jiang, X., and Zhao, B.: Catalytic activity of a thermosensitive hydrophilic diblock copolymer-supported 4-N,N-dialkylaminopyridine in hydrolysis of p-nitrophenyl acetate in aqueous buffers. Polymer 50, 4363 (2009).CrossRefGoogle Scholar
41. Lu, A., Smart, T.P., Epps, T.H., Longbottom, D.A., and O'Reilly, R.K.: l-proline functionalized polymers prepared by RAFT polymerization and their assemblies as supported organocatalysts. Macromolecules 44, 7233 (2011).CrossRefGoogle ScholarPubMed
42. Wang, Y., Wei, G.W., Zhang, W.Q., Jiang, X.W., Zheng, P.W., Shi, L.Q., and Dong, A.J.: Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles. J. Mol. Catal. A: Chem. 266, 233 (2007).CrossRefGoogle Scholar
43. O'Reilly, R.K., Hawker, C.J., and Wooley, K.L.: Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35, 1068 (2006).CrossRefGoogle ScholarPubMed
44. Yan, X., Liu, G., Liu, F., Tang, B.Z., Peng, H., Pakhomov, A.B., and Wong, C.Y.: Superparamagnetic triblock copolymer/Fe2O3 hybrid nanofibers. Angew. Chem., Int. Ed. 40, 3593 (2001).Google Scholar
45. Liu, Y., Pinon, V., and Weck, M.: Poly(norbornene) block copolymer-based shell cross-linked micelles with Co(iii)-salen cores. Polym. Chem. 2, 1964 (2011).CrossRefGoogle Scholar
46. Broadwater, S.J., Roth, S.L., Price, K.E., Kobaslija, M., and McQuade, D.T.: One-pot multi-step synthesis: a challenge spawning innovation. Org. Bio. Chem. 3, 2899 (2005).CrossRefGoogle ScholarPubMed
47. Tietze, L.F.: Domino reactions in organic synthesis. Chem. Rev. 96, 115 (1996).CrossRefGoogle ScholarPubMed
48. Cohen, B.J., Kraus, M.A., and Patchornik, A.: Wolf and lamb reactions - equilibrium and kinetic effects in multipolymer systems. J. Am. Chem. Soc. 103, 7620 (1981).CrossRefGoogle Scholar
49. Gao, H.: Development of star polymers as unimolecular containers for nanomaterials. Macromol. Rapid Commun. 33, 722 (2012).CrossRefGoogle ScholarPubMed
50. Helms, B., Guillaudeu, S.J., Xie, Y., McMurdo, M., Hawker, C.J., and Frechet, J.M.J.: One-pot reaction cascades using star polymers with core-confined catalysts. Angew. Chem., Int. Ed. 44, 6384 (2005).CrossRefGoogle ScholarPubMed
51. Baek, K.-Y., Kamigaito, M., and Sawamoto, M.: Core-functionalized star polymers by transition metal-catalyzed living radical polymerization. 2. Selective interaction with protic guests via core functionalities 1. Macromolecules 35, 1493 (2002).CrossRefGoogle Scholar
52. Terashima, T., Kamigaito, M., Baek, K.-Y., Ando, T., and Sawamoto, M.: Polymer catalysts from polymerization catalysts:  direct encapsulation of metal catalyst into star polymer core during metal-catalyzed living radical polymerization. J. Am. Chem. Soc. 125, 5288 (2003).CrossRefGoogle ScholarPubMed
53. Terashima, T., Ouchi, M., Ando, T., and Sawamoto, M.: Thermoregulated phase-transfer catalysis via PEG-armed Ru(II)-bearing microgel core star polymers: efficient and reusable Ru(II) catalysts for aqueous transfer hydrogenation of ketones. J. Polym. Sci., Part A: Polym. Chem. 48, 373 (2010).CrossRefGoogle Scholar
54. Terashima, T., Nomura, A., Ito, M., Ouchi, M., and Sawamoto, M.: Star-polymer-catalyzed living radical polymerization: microgel-core reaction vessel by tandem catalyst interchange. Angew. Chem., Int. Ed. 50, 7892 (2011).CrossRefGoogle ScholarPubMed