Skip to main content Accessibility help
×
Home

Brush-structured sulfur–polyaniline–graphene composite as cathodes for lithium–sulfur batteries

  • Heguang Liu (a1), Ruixuan Jing (a1), Caiyin You (a1) and Qifeng Zhong (a2)

Abstract

In this work, the authors report a facile method for the preparation of brush-structured nanocomposites of sulfur–polyaniline–graphene oxide (S–PANI–G) that were used for cathode materials of lithium–sulfur batteries (LSBs). The morphology and structure of composite were studied by x-ray photoelectron microscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction analysis. The nanocomposites exhibited good electrochemical performance involving good rate performance, high capacity, and promising cycling stability. The good performance of S–PANI–G results from the synergistic effect of sulfur, polyaniline, and graphene oxide. The composite and method reported here pave the way for the design and synthesis of novel cathode materials for LSBs.

Copyright

Corresponding author

Address all correspondence to Qifeng Zhong at zhong@cpu.edu.cn

References

Hide All
1.Evers, S. and Nazar, L.F.: New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 46, 1135 (2012).
2.Chen, W., Lei, T., Qian, T., Lv, W., He, W., Wu, C., Liu, X., Liu, J., Chen, B., Yan, C., and Xiong, J.: A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv. Energy Mater. 8, 1702889 (2018).
3.Pang, Q., Kwok, C.Y., Kundu, D., Liang, X., and Nazar, L.F.: Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium–sulfur batteries. Joule 3, 136148 (2019).
4.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).
5.Ellis, B.L., Lee, K.T., and Nazar, L.F.: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691 (2010).
6.Rana, M., Li, M., Huang, X., Luo, B., Gentlec, I., and Knibbe, R.: Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium–sulfur batteries. J. Mater. Chem. A 12, 65966615 (2019).
7.Gueon, D., Hwang, J.T., Yang, S.B., Cho, E., Sohn, K., Yang, D.K., and Moon, J.H.: Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium–sulfur battery cathodes. ACS Nano 12, 226233 (2018).
8.Pan, H., Han, K.S., Engelhard, M.H., Cao, R., Chen, J., Zhang, J.-G., Mueller, K.T., Shao, Y., and Liu, J.: Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018).
9.Shim, J., Striebel, K.A., and Cairns, E.J.: The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc. 149, A1321 (2002).
10.Dean, J.A.: Lange's Handbook of Chemistry, 3rd ed. (McGraw-Hill, New York, 1985).
11.Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J., and Liu, J.: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv. Mater. 24, 1176 (2012).
12.Chung, S.H. and Manthiram, A.: Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30, 1705951 (2018).
13.Pang, Q., Shyamsunder, A., Narayanan, B., Kwok, C.Y., Curtiss, L.A., and Nazar, L.F.: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783 (2018).
14.Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y., and Dai, H.: Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644 (2011).
15.Li, Y., and Chopra, N.: Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67, 44 (2015).
16.Li, Y., and Chopra, N.: Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77, 675 (2014).
17.Wu, F., Chen, J., Chen, R., Wu, S., Li, L., Chen, S., and Zhao, T.: Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 115, 6057 (2011).
18.Yu, X., Xie, J., Li, Y., Huang, H., Lai, C., and Wang, K.: Stable-cycle and high-capacity conductive sulfur-containing cathode materials for rechargeable lithium batteries. J. Power Sources 146, 335 (2005).
19.Chen, T., Ma, L., Cheng, B., Chen, R., Hu, Y., Zhu, G., Wang, Y., Liang, J., Tie, Z., Liu, J., and Jin, Z.: Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239248 (2017).
20.Chong, W.G., Huang, J.-Q., Xu, Z.-L., Qin, X., Wang, X., and Kim, J.-K.: Lithium–sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv. Funct. Mater. 27, 1604815 (2017).
21.Zheng, G., Zhang, Q., Cha, J.J., Yang, Y., Li, W., Seh, Z.W., and Cui, Y.: Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265 (2013).
22.Li, Y., Shi, W., and Chopra, N.: Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100, 165 (2015).
23.Li, K., Wang, B., Su, D., Park, J., Ahn, H., and Wang, G.: Enhance electrochemical performance of lithium–sulfur battery through a solution-based processing technique. J. Power Sources 202, 389 (2012).
24.Chen, Z., Du, X.-L., He, J.-B., Li, F., Wang, Y., Li, Y.-L., Li, B., and Xin, S.: Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 9, 3385533862 (2017).
25.Zhang, C., Wu, H.B., Yuan, C., Guo, Z., and Lou, X.W.: Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 9592 (2012).
26.Seh, Z.W., Li, W.Y., Cha, J.J., Zheng, G.Y., Yang, Y., Mcdowell, M.T., Hsu, P.C., and Cui, Y.: Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2012).
27.Li, Y., Dykes, J., Gilliam, T., and Chopra, N.: A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 9, 5263 (2017).
28.Li, Y., and Chopra, N.: Graphene encapsulated gold nanoparticle-quantum dot heterostructures and their electrochemical characterization. Appl. Surf. Sci. 344, 27 (2015).
29.Zhang, S.S.: Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344 (2012).
30.Barchasz, C., Leprêtre, J.-C., Alloin, F., and Patoux, S.: New insights into the limiting parameters of the Li/S rechargeable cell. J. Power Source 199, 322 (2012).
31.Zheng-Long, X., Kim, J.-K., and Kang, K.: Carbon nanomaterials for advanced lithium–sulfur batteries. Nano Today 19, 84107 (2018).
32.Xiao, P., Bu, F., Yang, G., Zhang, Y., and Xu, Y.: Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium–sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 29, 1703324 (2017).
33.Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., and Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).
34.Li, L., Raji, A.-R.O., Fei, H., Yang, Y., Samuel, E.L.G., and Tour, J.M.: Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interface 5, 6622 (2013).
35.Xu, J., Wang, K., Zu, S.Z., Han, B.H., and Wei, Z.: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019 (2010).
36.Hu, L., Tu, J., Jiao, S., Hou, J., Zhu, H., and Fray, D.J.: In situ electrochemical polymerization of a nanorod-PANI–graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys. Chem. Chem. Phys. 14, 15652 (2012).
37.Li, Y., Zhao, X., Yu, P., and Zhang, Q.: Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir 29, 493 (2012).
38.Pascal, T.A., Villaluenga, I., Wujcik, K.H., Devaux, D., Jiang, X., Wang, D.R., Balsara, N., and Prendergast, D.: Liquid sulfur impregnation of microporous carbon accelerated by nanoscale interfacial effects. Nano Lett. 17, 25172523 (2017).
39.Li, N., Zheng, M., Lu, H., Hu, Z., Shen, C., Chang, X., Ji, G., Cao, J., and Shi, Y.: High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun. 48, 4106 (2012).
40.Li, Y., and Chopra, N.: Structural evolution of cobalt oxide-tungsten oxide nanowire heterostructures for photocatalysis. J. Catal. 329, 514 (2015).
41.Yang, Y., Yu, G., Cha, J.J., Wu, H., Vosgueritchian, M., Yao, Y., Bao, Z., and Cui, Y.: Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5, 9187 (2011).
42.Zu, C., Su, Y.-S., Fu, Y., and Manthiram, A.: Improved lithium–sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys. 15, 2291 (2013).
43.Balach, J., Jaumann, T., and Giebeler, L.: Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li–S cells and Si–Li2S full cells in carbonate-based electrolyte. Energy Storage Mater. 8, 209216 (2017).

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Liu et al. supplementary material
Table S1 and Figure S1

 Word (162 KB)
162 KB

Brush-structured sulfur–polyaniline–graphene composite as cathodes for lithium–sulfur batteries

  • Heguang Liu (a1), Ruixuan Jing (a1), Caiyin You (a1) and Qifeng Zhong (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.