Skip to main content Accessibility help

Boron doping of ultrananocrystalline diamond films by thermal diffusion process

  • Pablo Tirado (a1) (a2), Jesus J. Alcantar-Peña (a2), Elida de Obaldia (a2) (a3), Yuriy Kudriavtsev (a4), Rafael García (a1) and Orlando Auciello (a2) (a5)...


A novel process for Boron doping of ultrananocrystalline diamond (UNCD) films, using thermal diffusion, is described. Hall measurements show an increase in carrier concentration from 1013 to 1020 cm−3. Ultraviolet Photoelectron Spectroscopy and x-ray Photoelectron Spectroscopy show a band gap of 4.4 eV, a work function of 5.1 eV and a Fermi level at 2.0 eV above the valence band. Boron atoms distribution through UNCD films, was measured by Secondary Ion Mass Spectrometry, revealing Boron atoms diffusivity of about 10−14 cm2/s. Raman spectroscopy and x-ray Diffraction analysis revealed that UNCD films did not suffer graphitization nor structural damage during annealing.


Corresponding author

Address all correspondence to Orlando Auciello at


Hide All
1.Auciello, O. and Sumant, A.V.: Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diamond Relat. Mater. 19, 699 (2010); (
2.Fabisiak, K. and Staryga, E.: CVD diamond: from growth to application. J. Achievements Mater. Manuf. Eng. 37, 264 (2009).
3.Kraft, A.: Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355 (2007).
4.Suman, A.V., Krauss, A.R., Gruen, D.M., Auciello, O., Erdemir, A., Wlliams, M., Artiles, A.F., and Adams, W.: Ultrananocrystalline diamond film as a wear-resistant and protective coating for mechanical seal applications. Tribol. Trans. 48, 24 (2005); (
5.Zeng, H., Konicek, A.R., Moldovan, N., Mangolini, F., Jacobs, T., Wylie, I., Arumugam, P.U., Siddiqui, S., Carpick, R.W., and Carlisle, J.A.: Boron-doped ultrananocrystalline diamond synthesized with an H-rich/Ar-lean gas system. Carbon. N. Y. 84, 103 (2015).
6.Xiao, X., Wang, J., Carlisle, J.A., Mech, B., Greenberg, R., Freda, R., Humayun, M.S., Weiland, J., and Auciello, O.: In Vitro and In Vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J. Biomed. Mater. 77B, 273 (2006).
7.Suzuki, M., Ono, T., Sakuma, N., and Sakai, T.: Low-temperature thermionic emission from nitrogen-doped nanocrystalline diamond films on n-type Si grown by MPCVD. Diamond Relat. Mater. 18, 1274 (2009).
8.Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A.V., and Zapol, P.: Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 79, 1441 (2001).
9.Bhattacharyya, S.: Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond. Phys. Rev. B70, 125412 (2004).
10.Williams, O.: Growth and properties of nanocrystalline diamond films. Physica Status Solidi: Appl. Mater. Sci. 203, 3375 (2006).
11.Sun, Q., Wang, J., Weng, J., and Liu, F.: Surface structure and electric properties of nitrogen incorporated NCD films. Vacuum 137, 155 (2017).
12.Kato, H., Takeuchi, D., Ogura, M., Yamada, T., Kataoka, M., Kimura, Y., Sobue, S., Nebel, C.E., Yamasaki, S., Meir, S., Stephanos, C., Geballe, T.H., Mannhart, J., Suzuki, M., Ono, T., Sakuma, N., Sakai, T., Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.X., Melosh, N.A., Sun, T., and Grilj, M.: Thermionic emission characterization of boron-doped microcrystalline diamond films at elevated temperatures. Diamond Relat. Mater. 5, 165 (2013).
13.Seo, J., Wu, H., Mikael, S., Mi, H., Blanchard, J.P., Venkataramanan, G., Zhou, W., Gong, S., and Morgan, D.: Thermal diffusion boron doping of single-crystal natural diamond. J. Appl. Phys. 119, 205703 (2016).
14.Wort, C.J.H. and Balmer, R.S.: Diamond as an electronic material. Mater. Today 11, 22 (2008).
15.Basher, M.K. and Shorowordi, K.M.: Fabrication of monocrystalline silicon solar cell using phosphorous diffusion technique. Int. J. Sci. Res. Pub. 5, 1 (2015).
16.Bentzen, A., Schubert, G., Christensen, J.S., Svensson, B.G., and Holt, A.: Influence of temperature during phosphorus emitter diffusion from a spray-on source in multicrystalline silicon solar cell processing. J. Optoelectron. Adv. Mater. 15, 3 (2013).
17.Filik, J.: Raman spectroscopy: a simple, non-destructive way to characterize diamond and diamond-like materials. Spectrosc. Eur. 17, 10 (2005).
18.Birrell, J., Gerbi, J.E., Auciello, O., Gibson, J.M., Johnson, J., and Carlisle, J.A.: Interpretation of the Raman spectra of ultrananocrystalline diamond. Diamond Relat. Mater. 14, 86 (2005).
19.Fuentes-Fernandez, E.M.A., Alcantar-Peña, J.J., Lee, G., Boulom, A., Phan, H., Smith, B., Nguyen, T., Sahoo, S., Ruiz-Zepeda, F., Arellano-Jimenez, M.J., Gurman, P., Martinez-Perez, C.A., Yacaman, M.J., Katiyar, R.S., and Auciello, O.: Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications. Thin Solid Films 603, 62 (2016).
20.Alcantar-Peña, J.J., Lee, G., Fuentes-Fernandez, E.M.A., Gurman, P., Quevedo-Lopez, M., Sahoo, S., Katiyar, R.S., Berman, D., and Auciello, O.: Science and technology of diamond films grown on HfO2 interface layer for transformational technologies. Diamond Relat. Mater. 69, 221 (2016).
21.Cui, J., Ristein, J. and Ley, L.: Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429 (1998).
22.Bob Downs, R.S. and Bartelmehs, K.: Interactive software for calculating and displaying x-ray or neutron powder diffractometer patterns of crystalline materials. Am. Mineral. 78, 1104 (1993).
23.Tyrrell, H.J.V.: The origin and present status of Fick's diffusion law. J. Chem. Educ. 41, 397 (1964).
24.Sung, T., Popovici, G., Prelas, M.A., and Wilson, R.G.: Boron diffusion coefficient in diamond. MRS Proc. 416, 467 (1996).
25.Popovici, G., Sung, T., Khasawinah, S., Prelas, M.A., and Wilson, R.G.: Forced diffusion of impurities in natural diamond and polycrystalline diamond films. J. Appl. Phys. 77, 5625 (1995).
26.Vickerman, J.C. and Gilmore, I.S. (eds.): Surface Analysis—The Principal Techniques, 2nd ed (John Wiley and Sons, Ltd., Hoboken, New Jersey, 2009).
27.Nichols, M.T., Li, W., Pei, D., Antonelli, G.A., Lin, Q., Banna, S., Nishi, Y., and Shoet, J.L.: Measurement of bandgap energies in low-k organosilicates. J. Appl. Phys. 115, 94105 (2014).
28.Pelaz, V.: Activation and deactivation of implanted Boron in Si. Appl. Phys. Lett. 75, 662 (1999).
Type Description Title
Supplementary materials

Tirado et al. supplementary material
Figures S1-S3

 Unknown (1.3 MB)
1.3 MB

Boron doping of ultrananocrystalline diamond films by thermal diffusion process

  • Pablo Tirado (a1) (a2), Jesus J. Alcantar-Peña (a2), Elida de Obaldia (a2) (a3), Yuriy Kudriavtsev (a4), Rafael García (a1) and Orlando Auciello (a2) (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed