Skip to main content Accessibility help

Biosilica/polydopamine/silver nanoparticles composites: new hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells

  • Danilo Vona (a1), Stefania Roberta Cicco (a2), Roberta Ragni (a1), Gabriella Leone (a1) (a3), Marco Lo Presti (a1) and Gianluca Maria Farinola (a1)...


Biosilica from living diatom microalgae has recently attracted the interest of the scientific community and found several applications in bio-nanotechnology. Among silica-maker organisms, diatom microalgae represent the most attractive marine microorganisms, featuring highly hierarchical, nanotextured and porous silica walls. These biologic structures, known as “frustules” are also chemically addressable via simple chemical synthesis. In this work, we propose new diatom-based hybrid materials consisting of biosilica extracted from living Thalassiosira weissflogii coated with polydopamine (PDA) films. The adhesion properties of the PDA were exploited to decorate the silica surface with silver nanoparticles. These multifunctional heterostructures can be useful for applications ranging from bioelectronics to biomedicine.


Corresponding author

Address all correspondence to Gianluca Maria Farinola at


Hide All
1.Patwardhan, S.V., Mukherjee, N., Steinitz-Kannan, M., and Clarson, S.J.: Bioinspired synthesis of new silica structures. Chem. Commun. 10, 11221123 (2003).
2.Fernandes, F.M., Coradin, T., and Aimé, C.: Self-assembly in biosilicification and biotemplated silica materials. Nanomaterials 4, 792812 (2014).
3.Müller, W.E.G., and Grachev, M.A.: Biosilica in Evolution, Morphogenesis, and Nanobiotechnology: Case Study Lake Baikal (Springer, 47, Berlin, 2009) Springer Science & Business Media, pp. 173184.
4.Vrieling, E.G., Gieskes, W.W.C., and Beelen, T.P.M.: Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J. Phycol. 35, 548559 (1999).
5.De Tommasi, E., Gielis, J., and Rogato, A.: Diatom frustule morphogenesis and function: a multidisciplinary survey. Mar. Genomics 35, 118 (2017).
6.Ragni, R., Cicco, S.R., Vona, D., Leone, G., and Farinola, G.M.: Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics. J. Mater. Res. 32, 279291 (2017).
7.Vona, D., Lo Presti, M., Cicco, S.R., Palumbo, F., Ragni, R., and Farinola, G.M.: Light emitting silica nanostructures by surface functionalization of diatom algae shells with a triethoxysilane-functionalized π-conjugated fluorophore. MRS Adv. 1, 38173823 (2015).
8.Cicco, S.R., Vona, D., Gristina, R., Sardella, E., Ragni, R., Lo Presti, M., and Farinola, G.M.: Biosilica from living diatoms: investigations on biocompatibility of bare and chemically modified Thalassiosira weissflogii silica shells. Bioengineering 3, 119 (2016).
9.Leone, G., Vona, D., Lo Presti, M., Urbano, L., Cicco, S., Gristina, R., Palumbo, F., Ragni, R., and Farinola, G.M.: Ca 2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: investigation on Saos-2 biocompatibility. MRS Adv. 2, 10471058 (2017).
10.Ragni, R., Scotognella, F., Vona, D., Moretti, L., Altamura, E., Ceccone, G., Mehn, D., Cicco, S.R., Palumbo, F., Lanzani, G., and Farinola, G.M.: Hybrid photonic nanostructures by in vivo incorporation of an organic fluorophore into diatom algae. Adv. Funct. Mater. 1706214, 19 (2018).
11.Cicco, S.R., Vona, D., De Giglio, E., Cometa, S., Mattioli Belmonte, M., Palumbo, F., Ragni, R., and Farinola, G.M.: Chemically modified diatoms biosilica for bone cell growth with combined drug delivery and antioxidant properties. ChemPlusChem 80, 11041112 (2015).
12.Ragni, R., Cicco, S.R., Vona, D., and Farinola, G.M.: Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv. Mater. 1704289, 123 (2017).
13.Dreyer, D.R., Miller, D.J., Freeman, B.D., Paul, D.R., and Bielawski, C.W.: Perspectives on poly(dopamine). Chem. Sci. 4, 37963802 (2013).
14.Ye, Q., Zhou, F., and Liu, W.: Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 40, 42444258 (2011).
15.Yu, M., Hwang, J., and Deming, T.J.: Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins. J. Amer. Chem. Soc. 121, 58255826 (1999).
16.Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426430 (2007).
17.Ho, C.C., and Ding, S.J.: Dopamine-induced silica–polydopamine hybrids with controllable morphology. Chem. Commun. 50, 36023605 (2014).
18.Ambrico, M., Ambrico, P.F., Ligonzo, T., Cardone, A., Cicco, S.R., D'Ischia, M., and Farinola, G.M.: From commercial tyrosine polymers to a tailored polydopamine platform: concepts, issues and challenges en route to melanin-based bioelectronics. J. Mater. Chem. C 3, 64136423 (2015).
19.Feng, J.J., Zhang, P.P., Wang, A.J., Liao, Q.C., Xi, J.L., and Chen, J.R.: One-step synthesis of monodisperse polydopamine-coated silver core–shell nanostructures for enhanced photocatalysis. New J. Chem. 36, 148154 (2012).
20.Wang, N., Zhang, D., Deng, X., Sun, Y., Wang, X., Ma, P., and Song, D.: A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 191, 290295 (2018).
21.Yang, Z., Wu, Y., Wang, J., Cao, B., and Tang, C.Y.: In situ reduction of silver by polydopamine: a novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 50, 95439550 (2016).
22.Choi, G.H., Rhee, D.K., Park, A.R., Oh, M.J., Hong, S., Richardson, J.J., Guo, J., Caruso, F., and Yoo, P.J.: Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes. ACS Appl. Mater. Int. 8, 32503257 (2016).
23.Park, M.V., Neigh, A.M., Vermeulen, J.P., de la Fonteyne, L.J., Verharen, H.W., Briedé, J.J., and de Jong, W.H.: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32, 98109817 (2011).
24.Chen, X., Yan, Y., Müllner, M., van Koeverden, M.P., Noi, K.F., Zhu, W., and Caruso, F.: Engineering fluorescent poly(dopamine) capsules. Langmuir 30, 29212925 (2014).
25.Yanlan, L., Kelong, A., and Lehui, L.: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 50575115 (2014).
26.Wei, Q., Zhang, F., Li, J., Li, B., and Zhao, C.: Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 1, 14301433 (2010).
27.Adamo, I., Ghisoli, C., and Caucia, F.: A contribution to the study of FTIR spectra of opals. Neues Jb. Mineral. Abh. 187, 6368 (2010).
28.Zangmeister, R.A., Todd. Morris, A., and Tarlov, M.J.: Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29, 86198628 (2013).
29.Natsuki, J., Natsuki, T., and Hashimoto, Y.: A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 4, 325332 (2015).
30.Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., and Upadhyay, S.N.: Green synthesis of silver nanoparticles: a review. Green Sustain. Chem. 6, 3556 (2016).
Type Description Title
Supplementary materials

Vona et al. supplementary material
Vona et al. supplementary material 1

 Word (2.4 MB)
2.4 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed