Skip to main content Accessibility help

Biomimetic non-uniform nanostructures reduce broadband reflectivity in transparent substrates

  • Alexandra A. Sourakov (a1) and Ahmed Al-Obeidi (a1)


The remarkable broadband and omnidirectional anti-reflectivity observed in the glasswing butterfly arises from the random array of nanopillars present on their wings. In the present study, analogous structures have been replicated on transparent substrates using a scalable, low-cost method that exploits surface dewetting of silver thin films on silica substrates to form an etch mask. Directional etching was applied with high selectivity between Ag and SiO2 using CHF3, allowing large aspect ratios to be achieved with 20 min etches. Single-sided nanostructuring of glass by this method improved the transmission of light by 2–8% for viewing angles of 25°, 45°, and 65°.


Corresponding author

Address all correspondence to Alexandra A. Sourakov at


Hide All
1.Macleod, H.A.: Thin-Film Optical Filters, 4th ed. (Taylor & Francis, Boca Raton, FL, 2010).
2.Cai, J. and Qi, L.: Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horiz. 2, 37 (2015).
3.Siddique, R.H., Gomard, G., and Holscher, H.: The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nat. Commun. 6, 6909 (2015).
4.Hecht, E.: Optics, 4th ed. (Addison-Wesley, Boston, MA, 2001).
5.Guenther, K.H.: Physical and chemical aspects in the application of thin films on optical elements. Appl. Opt. 23, 3612 (1984).
6.Raut, H.K., Ganesh, V.A., Nair, A.S., and Ramakrishna, S.: Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci. 4, 3779 (2011).
7.Yoldas, B.E.: Investigations of porous oxides as an antireflective coating for glass surfaces. Appl. Opt. 19, 1425 (1980).
8.Bernhard, C.G., Miller, W.H., and Moller, A.R.: The insect corneal nipple array. A biological, broad-band impedance transformer that acts as a antireflection coating. Acta Physiol. Scand. 63, Suppl 2431, 179 (1965).
9.Clapham, P.B. and Hutley, M.C.: Reduction of lens reflexion by the ‘Moth Eye’ principle. Nature 244, 281282 (1973).
10.Yoshida, A., Motoyama, M., Kosaku, A., and Miyamoto, K.: Nanoprotuberance array in the transparent wing of a hawkmoth, Cephonodes hylas. Zool. Sci. 13, 525 (1996).
11.Morikawa, J., Ryu, M., Seniutunas, G., Balcytis, A., Maximova, K., Wang, X., Zamengo, M., Ivanova, E., and Juodkazis, S.: Nanostructured antireflective and thermoisolative cicada wings. Langmuir 32, 4698 (2016).
12.Craighead, H.G., Howard, R.E., Sweeney, J.E., and Tennant, D.M.: Textured surfaces: optical storage and other applications. J. Vacuum Sci. Technol. 20, 316 (1982).
13.Halir, R., Bock, P.J., Cheben, P., Ortega-Monux, A., Alonso-Ramos, C., Schmid, J.H., Lapointe, J., Xu, D., Wanguemert-Perez, J.G., Molina-Fernandez, I., and Janz, S.: Waveguide sub-wavelength structures: a review of principles and applications. Laser Photonics Rev. 9, 25 (2015).
14.Siddique, R.H., Donie, Y.J., Gomard, G., Yalamanchili, S., Merdzhanova, T., Lemmer, U., and Hölscher, H.: Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Sci. Adv. 3, 1700232 (2017).
15.Huang, Y., Chattopadhyay, S., Jen, Y., Peng, C., Liu, T., Hsu, Y., Pan, C., LO, H., Hsu, C., Chang, Y., Lee, C., Chen, K., and Chen, L.: Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2, 770 (2007).
16.Chan, L., DeCuir, E.A. Jr., Fu, R., Morse, D.E., and Gordon, M.J.: Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity. J. Optics 19, 11 (2017).
17.Huang, Y., Jen, Y., Chen, L., Chen, K., and Chattopadhyay, S.: Design for approaching cicada-wing reflectance in low- and high-index biomimetic nanostructures. ACS Nano 9, 301 (2015).
18.Chen, Y.C., Huang, Z.S., and Yang, H.: Cicada-wing-inspired self-cleaning antireflection coatings on polymer substrates. ACS Appl. Mater. Interfaces 7, 25495 (2015).
19.Zhang, G., Zhang, J., Xie, G., Liu, Z., and Shao, H.: Cicada wings: a stamp from nature for nanoimprint lithography. Small 2, 1440 (2006).
20.Xie, G., Zhang, G., Lin, F., Zhang, J., Liu, Z., and Mu, S.: The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology 19, 095605 (2008).
21.Sun, J., Wang, X., Wu, J., Jiang, C., Shen, J., Cooper, M.A., Zheng, X., Liu, Y., Yang, Z., and Wu, D.: Biomimetic moth-eye nanofabrication: enhanced antireflection with superior self-cleaning characteristic. Sci. Rep. 8, 5438 (2018).
22.Binetti, V.R., Schiffman, J.D., Leaffer, O.D., Spanier, J.E., and Schauer, C.L.: The natural transparency and piezoelectric response of the Greta oto butterfly wing. Integr. Biol. (Camb.) 1, 324 (2009).
23.Thompson, C.: Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399 (2012).
24.Craighead, H.G., Howard, R.E., Sweeney, J.E., and Tennant, D.M.: Textured surfaces: optical storage and other applications. J. Vac. Sci. Technol. 20, 316 (1982).
25.Jorgensen, G.J., Brunold, S., Koehl, M., Nostell, P., Oversloot, H., and Roos, A.: Durability testing of antireflection coatings for solar applications, in SPIE Int. Symp. on Optical Science, Engineering, and Instrumentation, edited by Lampert, C.M. and Granqvist, C. (International Society for Optics and Photonics, 3789, Denver, CO, 1999), pp. 6676.
26.Gil-Alana, L.A., Aye, G.C., and Gupta, R.: Trends and cycles in historical gold and silver prices. J. Int. Money Finance 58, 98 (2015).
27.Madocks, J. and Seaman, W.: Anti-reflective coatings by plasma enhanced chemical vapor deposition for large area applications, in Society of Vacuum Coaters 54th Annual Technical Conference Proceedings, edited by McClure, D. (Society of Vacuum Coaters, Chicago, IL, 2011), pp. 229233.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary materials

Sourakov and Al-Obeidi supplementary material
Sourakov and Al-Obeidi supplementary material 1

 Word (18 KB)
18 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed