Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:17:03.790Z Has data issue: false hasContentIssue false

Bioderived protoporphyrin IX incorporation into a metal-organic framework for enhanced photocatalytic degradation of chemical warfare agents

Published online by Cambridge University Press:  01 March 2019

Marilyn S. Lee
Affiliation:
Edgewood Chemical Biological Center, U.S. Army Research, Development, and Engineering Command, 8567 Ricketts Point Rd. Aberdeen Proving Ground, MD 21010, USA
Sergio J. Garibay
Affiliation:
Edgewood Chemical Biological Center, U.S. Army Research, Development, and Engineering Command, 8567 Ricketts Point Rd. Aberdeen Proving Ground, MD 21010, USA
Ann M. Ploskonka
Affiliation:
Edgewood Chemical Biological Center, U.S. Army Research, Development, and Engineering Command, 8567 Ricketts Point Rd. Aberdeen Proving Ground, MD 21010, USA
Jared B. DeCoste*
Affiliation:
Edgewood Chemical Biological Center, U.S. Army Research, Development, and Engineering Command, 8567 Ricketts Point Rd. Aberdeen Proving Ground, MD 21010, USA
*
Address all correspondence to Jared B. DeCoste at jared.b.decoste2.civ@mail.mil
Get access

Abstract

Porphyrins absorb light to initiate photocatalytic activity. The complex, asymmetric structures of natural porphyrins such as heme, chlorophyll, and their derivatives hold unique interest. A platform for biosynthesis of porphyrins in Escherichia coli is developed with the aim of producing a variety of porphyrins for examining their photocatalytic properties within a porous material. Bioderived protoporphyrin IX is tethered inside the highly porous metal-organic framework (MOF) NU-1000 via solvent-assisted ligand incorporation. This MOF catalyzes the photocatalytic oxidation of 2-chloroethyl ethyl sulfide with improved performance over an expanded range of the visible spectrum when compared to unmodified NU-1000.

Type
Synthetic Biology Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cook, L.P., Brewer, G., and Wong-Ng, W.: Structural aspects of porphyrins for functional materials applications. Crystals (Basel) 7, 223 (2017). https://doi.org/10.3390/cryst7070223.Google Scholar
2.Zhao, M., Ou, S., and Wu, C.-D.: Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Acc. Chem. Res. 47, 11991207 (2014). https://doi.org/10.1021/ar400265x.Google Scholar
3.So, M.C., Wiederrecht, G.P., Mondloch, J.E., Hupp, J.T., and Farha, O.K.: Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 35013510 (2015). https://doi.org/10.1039/C4CC09596K.Google Scholar
4.Ling, P., Lei, J., Zhang, L., and Ju, H.: Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA. Anal. Chem. 87, 39573963 (2015). https://doi.org/10.1021/acs.analchem.5b00001.Google Scholar
5.Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.-G., Yeh, C.-Y., Zakeeruddin, S.M., and Gratzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629634 (2011). https://doi.org/10.1126/science.1209688.Google Scholar
6.Mahmood, A., Hu, J.-Y., Xiao, B., Tang, A., Wang, X., and Zhou, E.: Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A. 6, 1676916797 (2018). https://doi.org/10.1039/C8TA06392C.Google Scholar
7.Jurow, M., Schuckman, A.E., Batteas, J.D., and Drain, C.M.: Porphyrins as molecular electronic components of functional devices. Coord. Chem. Rev. 254, 22972310 (2010). https://doi.org/10.1016/j.ccr.2010.05.014.Google Scholar
8.Shemin, D. and Russell, C.S.: δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J. Am. Chem. Soc. 75, 48734874 (1953). https://doi.org/10.1021/ja01115a546.Google Scholar
9.Kwon, S.J., de Boer, A.L., Petri, R., and Schmidt-Dannert, C.: High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69, 48754883 (2003). https://doi.org/10.1128/AEM.69.8.4875-4883.2003.Google Scholar
10.Furuse, K., Fukuoka, M., Kato, H., Horai, T., Kubota, K., Kodama, N., Kusunoki, Y., Takifuji, N., Okunaka, T., and Konaka, C.: A prospective phase ii study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan lung cancer photodynamic therapy study group.J. Clin. Oncol. 11, 18521857 (1993). https://doi.org/10.1200/JCO.1993.11.10.1852.Google Scholar
11.Regula, J., MacRobert, A.J., Gorchein, A., Buonaccorsi, G.A., Thorpe, S.M., Spencer, G.M., Hatfield, A.R., and Bown, S.G.: Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinicacid induced protoporphyrin IX—a pilot study. Gut 36, 6775 (1995). https://doi.org/10.1136/gut.36.1.67.Google Scholar
12.Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R.K.: The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340362 (2011). https://doi.org/10.1039/B915149B.Google Scholar
13.Nielsen, M.T., Madsen, K.M., Seppälä, S., Christensen, U., Riisberg, L., Harrison, S.J., Møller, B.L., and Nørholm, M.H.H.: Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth. Biol. 4, 274282 (2015). https://doi.org/10.1021/sb500055u.Google Scholar
14.Kim, J., Chen, B., Reineke, T.M., Li, H., Eddaoudi, M., Moler, D.B., O'Keeffe, M., and Yaghi, O.M.: Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 82398247 (2001). https://doi.org/10.1021/ja010825o.Google Scholar
15.DeCoste, J.B. and Peterson, G.W.: Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev. 114, 56955727 (2014). https://doi.org/10.1021/cr4006473.Google Scholar
16.Barea, E., Montoro, C., and Navarro, J.A.R.: Toxic gas removal—metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43, 54195430 (2014). https://doi.org/10.1039/C3CS60475F.Google Scholar
17.Mondloch, J.E., Katz, M.J., Isley, W.C. III, Ghosh, P., Liao, P., Bury, W., Wagner, G.W., Hall, M.G., DeCoste, J.B., Peterson, G.W., Snurr, R.Q., Cramer, C.J., Hupp, J.T., and Farha, O.K.: Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 14, 512516 (2015). https://doi.org/10.1038/nmat4238.Google Scholar
18.Katz, M.J., Mondloch, J.E., Totten, R.K., Park, J.K., Nguyen, S.T., Farha, O.K., and Hupp, J.T.: Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. Angew. Chem., Int. Ed. 53, 497501 (2014). https://doi.org/10.1002/anie.201307520.Google Scholar
19.Liu, Y., Buru, C.T., Howarth, A.J., Mahle, J.J., Buchanan, J.H., DeCoste, J.B., Hupp, J.T., and Farha, O.K.: Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework. J. Mater. Chem. A 4, 1380913813 (2016). https://doi.org/10.1039/C6TA05903A.Google Scholar
20.Liu, Y., Howarth, A.J., Hupp, J.T., and Farha, O.K.: Selective photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework. Angew. Chem., Int. Ed. 54, 90019005 (2015). https://doi.org/10.1002/anie.201503741.Google Scholar
21.DeRosa, M.: Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351371 (2002). https://doi.org/10.1016/S0010-8545(02)00034-6.Google Scholar
22.Karagiaridi, O., Bury, W., Mondloch, J.E., Hupp, J.T., and Farha, O.K.: Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed. 53, 45304540 (2014). https://doi.org/10.1002/anie.201306923.Google Scholar
23.Deria, P., Bury, W., Hupp, J.T., and Farha, O.K.: Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chem. Commun. 50, 1965 (2014). https://doi.org/10.1039/c3cc48562e.Google Scholar
24.Mondloch, J.E., Bury, W., Fairen-Jimenez, D., Kwon, S., DeMarco, E.J., Weston, M.H., Sarjeant, A.A., Nguyen, S.T., Stair, P.C., Snurr, R.Q., Farha, O.K., and Hupp, J.T.: Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 135, 1029410297 (2013). https://doi.org/10.1021/ja4050828.Google Scholar
25.Howarth, A.J., Buru, C.T., Liu, Y., Ploskonka, A.M., Hartlieb, K.J., McEntee, M., Mahle, J.J., Buchanan, J.H., Durke, E.M., Al-Juaid, S.S., Stoddart, J.F., DeCoste, J.B., Hupp, J.T., and Farha, O.K.: Postsynthetic incorporation of a singlet oxygen photosensitizer in a metal-organic framework for fast and selective oxidative detoxification of sulfur mustard. Chem. – Eur. J. 23, 214218 (2017). https://doi.org/10.1002/chem.201604972.Google Scholar
26.Islamoglu, T., Otake, K., Li, P., Buru, C.T., Peters, A.W., Akpinar, I., Garibay, S.J., and Farha, O.K.: Revisiting the structural homogeneity of NU-1000, a Zr-based metal-organic framework. CrystEngComm 20, 59135918 (2018). https://doi.org/10.1039/C8CE00455B.Google Scholar
27.Neamţu, M., Nădejde, C., Hodoroaba, V.-D., Schneider, R.J., and Panne, U.: Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: synthesis, characterization and photocatalytic application. Appl. Catal., B 232, 553561 (2018). https://doi.org/10.1016/j.apcatb.2018.03.079.Google Scholar
28.Merkel, P.B. and Kearns, D.R.: Radiationless decay of singlet molecular oxygen in solution. Experimental and theoretical study of electronic-to-vibrational energy transfer.J. Am. Chem. Soc. 94, 72447253 (1972). https://doi.org/10.1021/ja00776a003.Google Scholar
Supplementary material: File

Lee et al. supplementary material

Lee et al. supplementary material 1

Download Lee et al. supplementary material(File)
File 1.3 MB