Skip to main content Accessibility help

Beam-induced crystallization of amorphous Me–Si–C (Me = Nb or Zr) thin films during transmission electron microscopy

  • Olof Tengstrand (a1), Nils Nedfors (a2), Matilda Andersson (a2), Jun Lu (a1), Ulf Jansson (a2), Axel Flink (a3), Per Eklund (a1) and Lars Hultman (a1)...


We report that an electron beam focused for high-resolution imaging rapidly initiates observable crystallization of amorphous Me–Si–C films. For 200-keV electron irradiation of Nb–Si–C and Zr–Si–C films, crystallization is observed at doses of ~2.8 × 109 and ~4.7 × 109 e/nm2, respectively. The crystallization process is driven by atomic displacement events, rather than heating from the electron beam as in situ annealing (400–600 °C) retains the amorphous state. Our findings demand a critical analysis of alleged amorphous and nanocrystalline ceramics including reassessing previous reports on nanocrystalline Me–Si–C films for possible electron-beam-induced crystallization effects.


Corresponding author

Address all correspondence to Olof Tengstrand


Hide All
1.Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).
2.Hobbs, L.W., Clinard, F.W. Jr., Zinkle, S.J., and Ewing, R.C.: Radiation effects in ceramics. J. Nucl. Mater. 216, 291 (1994).
3.Bae, I.T., Ishimaru, M., and Hirotsu, Y.: Structural changes of SiC under electron-beam irradiation: temperature dependence. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 315 (2006).
4.McCartney, M., Crozier, P., Weiss, J., and Smith, D.J.: Electron-beam-induced reactions at transition-metal oxide surfaces. Vacuum 42, 301 (1991).
5.Jenčič, I., Bench, M.W., Robertson, I.M., and Kirk, M.A.: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974 (1995).
6.Nagase, T., Sanda, T., Nino, A., Qin, W., Yasuda, H., Mori, H., Umakoshi, Y., and Szpunar, J.A.: MeV electron irradiation induced crystallization in metallic glasses: atomic structure, crystallization mechanism and stability of an amorphous phase under the irradiation. J. Non-Cryst. Solids 358, 502 (2012).
7.Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. (Springer, New York, 2009), pp. 6468.
8.Martínez-Martínez, D., López-Cartes, C., Fernández, A., and Sánchez-López, J.C.: Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517, 1662 (2009).
9.Nedfors, N., Tengstrand, O., Lewin, E., Furlan, A., Eklund, P., Hultman, L., and Jansson, U.: Structural, mechanical and electrical-contact properties of nanocrystalline-NbC/amorphous-C coatings deposited by magnetron sputtering. Surf. Coat. Technol. 206, 354 (2011).
10.Zehnder, T., Matthey, J., Schwaller, P., Klein, A., Steinmann, P.A., and Patscheider, J.: Wear protective coatings consisting of TiC-SiC-a-C: H deposited by magnetron sputtering. Surf. Coat. Technol. 163–164, 238 (2003).
11.Eklund, P., Emmerlich, J., Högberg, H., Wilhelmsson, O., Isberg, P., Birch, J., Å Persson, P.O., Jansson, U., and Hultman, L.: Structural, electrical, and mechanical properties of nc-TiC/a-SiC nanocomposite thin films. J. Vac. Sci. Technol., B 23, 2486 (2005).
12.Eklund, P.: Novel ceramic Ti-Si-C nanocomposite coatings for electrical contact applications. Surf. Eng. 23, 406 (2007).
13.Lopes, C., Parreira, N.M.G., Carvalho, S., Cavaleiro, A., Rivière, J.P., Le Bourhis, E., and Vaz, F.: Magnetron sputtered Ti-Si-C thin films prepared at low temperatures. Surf. Coat. Technol. 201, 7180 (2007).
14.Lauridsen, J., Eklund, P., Joelsson, T., Ljungcrantz, H., Öberg, Å., Lewin, E., Jansson, U., Beckers, M., Högberg, H., and Hultman, L.: High-rate deposition of amorphous and nanocomposite Ti-Si-C multifunctional coatings. Surf. Coat. Technol. 205, 299 (2010).
15.Naka, M., Sakai, H., Maeda, M., and Mori, H.: Formation and thermal stability of amorphous Ti-Si-C alloys. Mater. Sci. Eng., A 226–228, 774 (1997).
16.Kádas, K., Andersson, M., Holmström, E., Wende, H., Karis, O., Urbonaite, S., Butorin, S.M., Nikitenko, S., Kvashnina, K.O., Jansson, U., and Eriksson, O.: Structural properties of amorphous metal carbides: theory and experiment. Acta Mater. 60, 4720 (2012).
17.Krzanowski, J.E. and Wormwood, J.: Microstructure and mechanical properties of Mo-Si-C and Zr-Si-C thin films: compositional routes for film densification and hardness enhancement. Surf. Coat. Technol. 201, 2942 (2006).
18.Endrino, J.L. and Krzanowski, J.E.: Nanostructure and mechanical properties of WC-SiC thin films. J. Mater. Res. 17, 3163 (2002).
19.Nedfors, N., Tengstrand, O., Flink, A., Eklund, P., Hultman, L., and Jansson, U.: Multifunctional amorphous and nanocomposite Nb-Si-C coatings deposited by DC magnetron sputtering. Thin Solid Films. DOI:10.1016/j.tsf.2013.08.066.
20.Andersson, M., Urbonaite, S., Lewin, E., and Jansson, U.: Magnetron sputtering of Zr-Si-C thin films. Thin Solid Films 520, 6375 (2012).
21.Lewin, E., Gorgoi, M., Schäfers, F., Svensson, S., and Jansson, U.: Influence of sputter damage on the XPS analysis of metastable nanocomposite coatings. Surf. Coat. Technol. 204, 455 (2009).
22.Walck, S.D. and McCaffrey, J.P.: The small angle cleavage technique applied to coatings and thin films. Thin Solid Films 308–309, 399 (1997).
23.McCaffrey, J.P.: Small-angle cleavage of semiconductors for transmission electron microscopy. Ultramicroscopy 38, 149 (1991).
24.Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).
25.Hobbs, L.W.: Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 23, 339 (1987).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed