Skip to main content Accessibility help

A Bayesian framework for materials knowledge systems

  • Surya R. Kalidindi (a1)


This prospective offers a new Bayesian framework that could guide the systematic application of the emerging toolsets of machine learning in the efforts to address two of the central bottlenecks encountered in materials innovation: (i) the capture of core materials knowledge in reduced-order forms that allow one to rapidly explore the vast materials design spaces, and (ii) objective guidance in the selection of experiments or simulations needed to identify the governing physics in the materials phenomena of interest. The framework builds on recent advances in the low-dimensional representation of the statistics describing the material's hierarchical structure.


Corresponding author

Address all correspondence to Surya R. Kalidindi at


Hide All
1.Materials Genome Initiative for Global Competitiveness. National Science and Technology Council, Editor. 2011.
2.McDowell, D.L. and Kalidindi, S.R.: The materials innovation ecosystem: a key enabler for the Materials Genome Initiative. MRS Bull. 41, 326337 (2016).
3.Drosback, M.: Materials genome initiative: advances and initiatives. JOM 66, 334335 (2014).
4.Olson, G.B. and Kuehmann, C.J.: Materials genomics: from CALPHAD to flight. Scr. Mater. 70, 2530 (2014).
5.Zhao, J.C.: High-throughput experimental tools for the materials genome initiative. Chin. Sci. Bull. 59, 16521661 (2014).
6.Breneman, C.M., Brinson, L.C., Schadler, L.S., Natarajan, B., Krein, M., Wu, K., Morkowchuk, L., Li, Y., Deng, H. and Xu, H.: Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv. Funct. Mater. 23, 57465752 (2013).
7.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G. and Persson, K.A.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
8.Ramakrishna, S., Zhang, T.-Y., Lu, W.-C., Qian, Q., Low, J.S.C., Yune, J.H.R., Tan, D.Z.L., Bressan, S., Sanvito, S. and Kalidindi, S.R.: Materials informatics. J. Intell. Manuf. 10.1007/s10845-018-1392-0 (2018).
9.Kalidindi, S.R., Medford, A.J., and McDowell, D.L.: Vision for data and informatics in the future materials innovation ecosystem. JOM 68, 21262137 (2016).
10.Kalidindi, S.R.: Hierarchical Materials Informatics (Butterworth Heinemann, Waltham, MA, 2015).
11.Voorhees, P. and Spanos, G.: Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales. Tech. rep. (The Minerals, Metals & Materials Society (TMS), Pittsburgh, PA, 2015).
12.Gulsoy, E.B., Shahani, A.J., Gibbs, J.W., Fife, J.L. and Voorhees, P.W.: Four-dimensional morphological evolution of an aluminum silicon alloy using propagation-based phase contrast X-ray tomographic microscopy. Mater. Trans. 55, 161164 (2014).
13.Uchic, M.D., Groeber, M.A., and Rollett, A.D.: Automated serial sectioning methods for rapid collection of 3-D microstructure data. JOM 63, 2529 (2011).
14.Bingert, J.F., Suter, R.M., Lind, J., Li, S.F., Pokharel, R. and Trujillo, C.P.: High-energy diffraction microscopy characterization of spall damage. In Proulx, Tom, Song, Bo, Casem, Dan and Kimberley, Jamie (eds.), Dynamic Behavior of Materials (Springer, New York, NY, 1, 2014), pp. 397403.
15.Lienert, U., Li, S.F., Hefferan, C.M., Lind, J., Suter, R.M., Bernier, J.V., Barton, N.R., Brandes, M.C., Mills, M.J., Miller, M.P., Jakobsen, B. and Pantleon, W.: High-energy diffraction microscopy at the advanced photon source. JOM Journal of the Minerals, Metals and Materials Society 63, 7077 (2011).
16.Kalidindi, S.R., Brough, D.B., Li, S., Cecen, A., Blekh, A.L., Congo, F.Y.P. and Campbell, C.: Role of materials data science and informatics in accelerated materials innovation. MRS Bull. 41, 596602 (2016).
17.Kalidindi, S.R. and Graef, M.D.: Materials data science: current status and future outlook. Annu. Rev. Mater. Res. 45, 171193 (2015).
18.Rajan, K.: Materials informatics. Mater. Today 8, 3845 (2005).
19.Brough, D.B., Wheeler, D., and Kalidindi, S.R.: Materials knowledge systems in python—a data science framework for accelerated development of hierarchical materials. Integr. Mater. Manuf. Innovation 6, 3653 (2017).
20.Kim, C., Chandrasekaran, A., Huan, T.D., Das, D. and Ramprasad, R.: Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122, 1757517585 (2018).
21.Kalidindi, S.R.: Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int. Mater. Rev. 60, 150168 (2015).
22.Linden, G., Smith, B., and York, J.: Amazon. com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7, 7680 (2003).
23.Cruz, J.A. and Wishart, D.S.: Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 5978 (2006).
24.Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U. and Zhang, J.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.
25.Kajikawa, Y., Sugiyama, Y., Mima, H. and Matsushima, K.: Causal knowledge extraction by natural language processing in material science: a case study in chemical vapor deposition. Data Sci. J. 5, 108118 (2006).
26.Kim, E., Huang, K., Tomala, A., Matthews, S., Strubell, E., Saunders, A., McCallum, A. and Olivetti, E.: Machine-learned and codified synthesis parameters of oxide materials. Sci. Data 4, 170127 (2017).
27.Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J. and Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS One 8, e71715 (2013).
28.Chowdhury, A., Kautz, E., Yener, B. and Lewis, D.: Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 123, 176187 (2016).
29.Raccuglia, P., Elbert, K.C., Adler, P.D.F., Falk, C., Wenny, M.B., Mollo, A., Zeller, M., Friedler, S.A., Schrier, J. and Norquist, A.J.: Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73 (2016).
30.Meredig, B., Agrawal, A., Kirklin, S., Saal, J.E., Doak, J.W., Thompson, A., Zhang, K., Choudhary, A. and Wolverton, C.: Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).
31.Liu, Y., Zhao, T., Ju, W. and Shi, S.: Materials discovery and design using machine learning. J. Materiomics 3, 159177 (2017).
32.Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. and Kim, C.: Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).
33.Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B.P., Ramprasad, R., Gubernatis, J.E. and Lookman, T.: Machine learning bandgaps of double perovskites. Sci. Rep. 6, 19375 (2016).
34.Pilania, G. et al. : Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013).
35.Yabansu, Y.C., Steinmetz, P., Hötzer, J., Kalidindi, S.R. and Nestler, B.: Extraction of reduced-order process–structure linkages from phase-field simulations. Acta Mater. 124, 182194 (2017).
36.Popova, E., Rodgers, T.M., Gong, X., Cecen, A., Madison, J.D. and Kalidindi, S.R.: Process-structure linkages using a data science approach: application to simulated additive manufacturing data. Integr. Mater. Manuf. Innovation, 6, 5468 (2017).
37.Iskakov, A., Yabansu, Y.C., Rajagopalan, S., Kapustina, A. and Kalidindi, S.R.: Application of spherical indentation and the materials knowledge system framework to establishing microstructure-yield strength linkages from carbon steel scoops excised from high-temperature exposed components. Acta Mater. 144, 758767 (2017).
38.Paulson, N.H., Priddy, M.W., McDowell, D.L. and Kalidindi, S.R.: Reduced-order structure–property linkages for polycrystalline microstructures based on 2-point statistics. Acta Mater. 129, 428438 (2017).
39.Priddy, M.W., Paulson, N.H., Kalidindi, S.R. and McDowell, D.L.: Strategies for rapid parametric assessment of microstructure-sensitive fatigue for HCP polycrystals. Int. J. Fatigue 104, 231242 (2017).
40.Bhadeshia, H.K.D.H.: Neural networks and information in materials science. Stat. Anal. Data. Min. 1, 296305 (2009).
41.Jain, A., Persson, K.A., and Ceder, G.: Research update: the materials genome initiative: data sharing and the impact of collaborative ab initio databases. APL Mater. 4, 053102 (2016).
42.Hu, C., Ouyang, C., Wu, J., Zhang, X. and Zhao, C.: NON-structured materials science data sharing based on semantic annotation. Data Sci. J. 8, 5261 (2009).
43.McDowell, D.L. and Olson, G.B.: Concurrent design of hierarchical materials and structures. Sci. Model. Simul. 15, 207240 (2008).
44.Olson, G.B.: Pathways of discovery designing a new material world. Science 228, 933998 (2000).
45.Olson, G.B.: Computational design of hierarchically structured materials. Science 277, 12371242 (1997).
46.Olson, G.B.: Systems design of hierarchically structured materials: advanced steels. J. Comput. Aided Mater. Des. 4, 143156 (1997).
47.McDowell, D.L., Panchal, J.H., Choi, H. -J., Seepersad, C.C., Allen, J.K. and Mistree, F.: Integrated Design of Multiscale, Multifunctional Materials and Products (Elsevier, Burlington, MA, 2009).
48.Adams, B.L., Kalidindi, S.R., and Fullwood, D.T.: Microstructure Sensitive Design for Performance Optimization (Elsevier Science, Oxford, 2012).
49.Gomberg, J.A., Medford, A.J., and Kalidindi, S.R.: Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning. Acta Mater. 133(Supplement C), 100108 (2017).
50.Bostanabad, R., Zhang, Y., Li, X., Kearney, T., Brinson, L.C., Apley, D.W., Liu, W.K. and Chen, W.: Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog. Mater. Sci. 95, 141 (2018).
51.Frazier, P.I. and Wang, J.: Bayesian optimization for materials design. In Lookman, Turab, Alexander, Francis J., Rajan, Krishna (eds.), Information Science for Materials Discovery and Design (Springer, New York, NY, 2016), pp. 4575.
52.Angelikopoulos, P., Papadimitriou, C., and Koumoutsakos, P.: X-TMCMC: adaptive kriging for Bayesian inverse modeling. Comput. Methods. Appl. Mech. Eng. 289, 409428 (2015).
53.Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A. and Rubin, D.: Bayesian Data Analysis, 3rd ed. (Chapman & Hall/CRC Texts in Statistical Science). (Chapman and Hall/CRC, Boca Raton, FL, 2014).
54.Gamerman, D. and Lopes, H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian inference (CRC Press, New York, NY, 2006).
55.Box, G.E. and Tiao, G.C.: Bayesian inference in statistical analysis (John Wiley & Sons, 2011).
56.Whitney, J.M.: Structural Analysis of Laminated Anisotropic plates (CRC Press, Lancaster, PA, 1987).
57.Kroner, E.: Statistical modelling. In Modelling Small Deformations of Polycrystals, edited by Gittus, J. and Zarka, J. (Elsevier Science Publishers: London, 1986), pp. 229291.
58.Garmestani, H., Lin, S., Adams, B.L. and Ahzi, S.: Statistical continuum theory for large plastic deformation of polycrystalline materials. J. Mech. Phys. Solids 49, 589607 (2001).
59.Yabansu, Y.C. and Kalidindi, S.R.: Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals. Acta Mater. 94, 2635 (2015).
60.Alharbi, H.F. and Kalidindi, S.R.: Crystal plasticity finite element simulations using a database of discrete Fourier transforms. Int. J. Plast. 66, 7184 (2015).
61.Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R. and Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 11521211 (2010).
62.Lahiri, A. and Choudhury, A.: Revisiting Jackson-Hunt calculations: unified theoretical analysis for generic multi-phase growth in a multi-component system. Acta Mater. 133(Supplement C), 316332 (2017).
63.Yamanaka, A., McReynolds, K., and Voorhees, P.W.: Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal. Acta Mater. 133(Supplement C), 160171 (2017).
64.Arsenlis, A. and Tang, M.: Simulations on the growth of dislocation density during stage 0 deformation in BCC metals. Modelling Simul. Mater. Sci. Eng. 11, 251264 (2003).
65.Hähner, P. and Zaiser, M.: Dislocation dynamics and work hardening of fractal dislocation cell structures. Mater. Sci. Eng., A 272, 443454 (1999).
66.Rao, S.I., Dimiduk, D.M., El-Awady, J.A., Parthasarathy, T.A., Uchic, M.D. and Woodward, C.: Atomistic simulations of cross-slip nucleation at screw dislocation intersections in face-centered cubic nickel. Philos. Mag. 89, 33513369 (2009).
67.Leonardi, A. and Bish, D.L.: Interactions of lattice distortion fields in nanopolycrystalline materials revealed by molecular dynamics and X-ray powder diffraction. Acta Mater. 133(Supplement C), 380392 (2017).
68.Yang, L., Zhang, D., and Karniadakis, G.E.: Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations. arXiv e-prints, 2018.
69.Huan, X. and Marzouk, Y.M.: Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys. 232, 288317 (2013).
70.MacKay, D.J.C.: Introduction to Gaussian process. Neural Networks and Machine Learning 8492 (1998).
71.Rasmussen, C.E.: Evaluation of Gaussian Processes and Other Methods for non-Linear Regression (University of Toronto, Toronto, ON, Canada).
72.Christopher, M.B.: Pattern Recognition and Machine Learning (Springer-Verlag, New York, 2006).
73.MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4, 415447 (1992).
74.MacKay, D.J.C.: Hyperparameters: Optimize, or Integrate Out? 1996.
75.Gelman, A.: Bayesian Data Analysis, 2nd ed. (Chapman & Hall/CRC, Boca Raton, FL, 2004).
76.Haario, H., Saksman, E., and Tamminen, J.: Componentwise adaptation for high dimensional MCMC. Comput. Stat. 20, 265273 (2005).
77.Huang, L.J, Geng, L., Wang, B. and Wu, LZ.: Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with novel network microstructure. Mater. Des. 45, 532538 (2013).
78.Xu, X., van der Zwaag, S., and Xu, W.: The effect of ferrite–martensite morphology on the scratch and abrasive wear behaviour of a dual phase construction steel. Wear 348–349, 148157 (2016).
79.Wang, Q., Li, Y., Li, S., Xiang, R., Xu, N. and OuYang, S.: Effects of critical particle size on properties and microstructure of porous purging materials. Mater. Lett. 197, 4851 (2017).
80.Li, R., Xin, R., Liu, Q., Chapuis, A., Liu, S., Fu, G. and Zong, L.: Effect of grain size, texture and density of precipitates on the hardness and tensile yield stress of Mg-14Gd-0.5Zr alloys. Mater. Des. 114, 450458 (2017).
81.Kar, S., Searles, T., Lee, E., Viswanathan, G.B., Fraser, H.L., Tiley, J. and Banerjee, R.: Modeling the tensile properties in β-processed α/β Ti alloys. Metall. Mater. Trans. A 37, 559566 (2006).
82.Qidwai, S.M., Turner, D.M., Niezgoda, S.R., Lewis, A.C., Geltmacher, A.B., Rowenhorst, D.J. and Kalidindi, S.R.: Estimating response of polycrystalline materials using sets of weighted statistical volume elements (WSVEs). Acta Mater. 60, 52845299 (2012).
83.Rowenhorst, D.J., Lewis, A.C., and Spanos, G.: Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy. Acta Mater. 58, 55115519 (2010).
84.Paulson, N.H., Priddy, M.W., McDowell, D.L. and Kalidindi, S.R.: Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures. Mater. Des. 154, 170183 (2018).
85.Adams, B.L., Xiang, G., and Kalidindi, S.R.: Finite approximations to the second-order properties closure in single phase polycrystals. Acta Mater. 53, 35633577 (2005).
86.Fullwood, D.T., Niezgoda, S.R., Adams, B.L. and Kalidindi, S.R.: Microstructure sensitive design for performance optimization. Prog. Mater. Sci. 55, 477562 (2010).
87.Dong, X. et al. : Dependence of mechanical properties on crystal orientation of semi-crystalline polyethylene structures. Polymer 55, 42484257 (2014).
88.Fullwood, D.T., Niezgoda, S.R., and Kalidindi, S.R.: Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56, 942948 (2008).
89.Turner, D.M. and Kalidindi, S.R.: Statistical construction of 3-D microstructures from 2-D exemplars collected on oblique sections. Acta Mater. 102, 136148 (2016).
90.Sundararaghavan, V.: Reconstruction of three-dimensional anisotropic microstructures from two-dimensional micrographs imaged on orthogonal planes. Integr. Mater. Manuf. Innovation 3, 19 (2014).
91.Mika, S., Schölkopf, B., Smola, A.J., Müller, K.-R., Scholz, M. and Rätsch, G.: Kernel PCA and de-noising in feature spaces. In Advances in Neural Information Processing Systems (Massachusetts Institute of Technology, Cambridge, MA, 1999), pp. 536542.
92.Roweis, S.T. and Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 23232326 (2000).
93.Zhang, Z. and Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26, 313338 (2004).
94.Fast, T. and Kalidindi, S.R.: Formulation and calibration of higher-order elastic localization relationships using the MKS approach. Acta Mater. 59, 45954605 (2011).
95.Montes de Oca Zapiain, D., Popova, E., and Kalidindi, S.R.: Prediction of microscale plastic strain rate fields in two-phase composites subjected to an arbitrary macroscale strain rate using the materials knowledge system framework. Acta Mater. 141(Supplement C), 230240 (2017).
96.Montes de Oca Zapiain, D., Popova, E., Abdeljawad, F., Foulk, J.W., Kalidindi, S.R. and Lim, H.: Reduced-order microstructure-sensitive models for damage initiation in two-phase composites. Integr. Mater. Manuf. Innovation 7, 97115 (2018).
97.Paulson, N.H., Priddy, M.W., McDowell, D.L. and Kalidindi, S.R.: Reduced-order microstructure-sensitive protocols to rank-order the transition fatigue resistance of polycrystalline microstructures. Int. J. Fatigue 119, 110 (2019).
98.Cecen, A., Dai, H., Yabansu, Y.C., Kalidindi, S.R. and Song, L.: Material structure–property linkages using three-dimensional convolutional neural networks. Acta Mater. 146, 7684 (2018).
99.Yang, Z., Yabansu, Y.C., Al-Bahrani, R., Liao, W., Choudhary, A.N., Kalidindi, S.R. and Agrawal, A.: Deep learning approaches for mining structure–property linkages in high contrast composites from simulation datasets. Comput. Mater. Sci. 151, 278287 (2018).
100.Lubbers, N., Lookman, T., and Barros, K.: Inferring low-dimensional microstructure representations using convolutional neural networks. Phys. Rev. E 96, 052111 (2017).
101.Box, G.E.P., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M.: Time Series Analysis: Forecasting and Control (John Wiley & Sons, Hoboken, NJ, 2015).
102.Brockwell, P.J., Davis, R.A., and Calder, M.V.: Introduction to Time Series and Forecasting (Springer, New York, NY, 2, 2002).
103.Hamilton, J.D.: Time Series analysis (Princeton University Press, 2, Princeton, NJ, 1994).
104.Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.), 58, 267288 (1996).
105.Hoerl, A.E. and Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 5567 (1970).
106.Latypov, M.I., Toth, L.S., and Kalidindi, S.R.: Materials knowledge system for nonlinear composites. Comput. Methods. Appl. Mech. Eng. 346, 180196 (2018).
107.Lee Rodgers, J. and Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42, 5966 (1988).
108.Brough, D.B., Kannan, A., Haaland, B., Bucknall, D.G. and Kalidindi, S.R.: Extraction of process-structure evolution linkages from X-ray scattering measurements using dimensionality reduction and time series analysis. Integr. Mater. Manuf. Innovation, 6, 147159 (2017).
109.Li, Q., Gu, L., Augenbroe, G., Wu, C.F.J. and Brown, J.: A Generic Approach to Calibrate Building Energy Models under Uncertainty Using Bayesian Inference. In Building Simulation Conference. Hyderabad, India, 2015.
110.Nikolaev, P., Hooper, D., Webber, F., Rao, R., Decker, K., Krein, M., Poleski, J., Barto, R. and Maruyama, B.: Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2, 16031 (2016).
111.Panchal, J.H., Kalidindi, S.R., and McDowell, D.L.: Key computational modeling issues in integrated computational materials engineering. Computer-Aided Design 45, 425 (2013).
112.Pathak, S. and Kalidindi, S.R.: Spherical nanoindentation stress–strain curves. Mater. Sci., Eng. R., Rep. 91, 136 (2015).
113.Weaver, J.S. and Kalidindi, S.R.: Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress–strain measurements. Mater. Des. 111, 463472 (2016).
114.Khosravani, A., Morsdorf, L., Tasan, C.C. and Kalidindi, S.R.: Multiresolution mechanical characterization of hierarchical materials: spherical nanoindentation on martensitic Fe-Ni-C steels. Acta Mater. 153, 257269 (2018).
115.Patel, D. and Kalidindi, S.: Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int. J. Plast. 92, 19 (2017).
116.Patel, D.K. and Kalidindi, S.R.: Correlation of spherical nanoindentation stress–strain curves to simple compression stress–strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater. 112, 295302 (2016).
117.Patel, D.K., Al-Harbi, H.F., and Kalidindi, S.R.: Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater. 79, 108116 (2014).
118.Pathak, S., Stojakovic, D., and Kalidindi, S.R.: Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater. 57, 30203028 (2009).
119.Castillo, A. and Kalidindi, S.R.: Accelerated extraction of crystal level elastic parameters via Bayesian framework. Front. Mater. (2019), submitted.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed