Skip to main content Accessibility help
×
Home

Are lead-free piezoelectrics more environmentally friendly?

  • T. Ibn-Mohammed (a1) (a2), S. C. L. Koh (a1) (a2), I. M. Reaney (a3), D. C. Sinclair (a3), K. B. Mustapha (a4), A. Acquaye (a5) and D. Wang (a3)...

Abstract

Considered as a less hazardous piezoelectric material, potassium sodium niobate (KNN) has been in the fore of the search for replacement of lead (Pb) zirconate titanate for piezoelectrics applications. Here, we challenge the environmental credentials of KNN due to the presence of ~60 wt% Nb2O5, a substance much less toxic to humans than Pb oxide, but whose mining and extraction cause significant environmental damage.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Are lead-free piezoelectrics more environmentally friendly?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Are lead-free piezoelectrics more environmentally friendly?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Are lead-free piezoelectrics more environmentally friendly?
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Address all correspondence to T. Ibn-Mohammed, I. M. Reaney at t.ibn-mohammed@sheffield.ac.uk; i.m.reaney@sheffield.ac.uk

References

Hide All
1. Koruza, J., Rožič, B., Cordoyiannis, G., Malič, B., and Kutnjak, Z.: Large electrocaloric effect in lead-free K0.5Na0.5NbO3–SrTiO3 ceramics. Appl. Phys. Lett. 106, 202905 (2015).
2. Zhang, H., Chen, C., Zhao, X., Deng, H., Ren, B., Li, X., Luo, H., and Li, S.: Structure and electrical properties of Na1/2Bi1/2TiO3–xK1/2Bi1/2TiO3 lead-free ferroelectric single crystals. Solid State Commun. 201, 125 (2015).
3. Lusiola, T., Bortolani, F., Zhang, Q., and Dorey, R.: Molten hydroxide synthesis as an alternative to molten salt synthesis for producing K0.5Na0.5NbO3 lead free ceramics. J. Mater. Sci. 47, 1938 (2012).
4. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).
5. Nourmohammadi, A., Bahrevar, M., Schulze, S., and Hietschold, M.: Electrodeposition of lead zirconate titanate nanotubes. J. Mater. Sci. 43, 4753 (2008).
6. He, C., Li, X., Wang, Z., Liu, Y., Shen, D., Li, T., Long, X., and Ye, Z.-G.: Growth of Pb (Fe1/2Nb1/2) O3–Pb (Yb1/2Nb1/2) O3–PbTiO3 piezo-/ferroelectric crystals for high power and high temperature applications. CrystEngComm 14, 4407 (2012).
7. Cucchiella, F., D'Adamo, I., Koh, S.L., and Rosa, P.: Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev. 51, 263 (2015).
8. Koh, S., Ibn-Mohammed, T., Acquaye, A., Feng, K., Reaney, I., Hubacek, K., Fujii, H., and Khatab, K.: Drivers of US toxicological footprints trajectory 1998–2013. Sci. Rep. 6, 39514 (2016).
9. Kutz, M.: Mechanical Engineers’ Handbook, Materials and Engineering Mechanics (John Wiley & Sons, West Sussex, England, 2015).
10. Ibn-Mohammed, T., Koh, S., Reaney, I., Acquaye, A., Wang, D., Taylor, S., and Genovese, A.: Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy Environ. Sci. 9, 3495 (2016).
11. Curie, P. and Curie, J.: Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. C. R. Acad. Sci. 91, 294 (1880).
12. Jaeger, R. and Egerton, L.: Hot pressing of potassium–sodium niobates. J. Am. Ceram. Soc. 45, 209 (1962).
13. Heywang, W., Lubitz, K., and Wersing, W.: Piezoelectricity: Evolution and Future of a Technology (Springer Science & Business Media, Berlin/Heidelberg, 2008).
14. Jo, W., Dittmer, R., Acosta, M., Zang, J., Groh, C., Sapper, E., Wang, K., and Rödel, J.: Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J. Electroceram. 29, 71 (2012).
15. Rödel, J., Jo, W., Seifert, K.T., Anton, E.M., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).
16. Ledbetter, H., Ogi, H., and Nakamura, N.: Elastic, anelastic, piezoelectric coefficients of monocrystal lithium niobate. Mech. Mater. 36, 941 (2004).
17. Karaki, T., Adachi, M., and Yan, K.: High-performance lead-free barium titanate piezoelectric ceramics. In Advances in Science and Technology, Vol. 54, edited by Vincenzini, P. and D'arrigo, G. (Trans Tech Publ, Zurich, Switzerland, 2008), pp. 712.
18. Takahashi, H., Numamoto, Y., Tani, J., Matsuta, K., Qiu, J., and Tsurekawa, S.: Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Japan. J. Appl. Phys. 45, L30 (2006).
19. Kakimoto, K.-I., Yoshifuji, T., and Ohsato, H.: Densification of tungsten-bronze KBa2Nb5O15 lead-free piezoceramics. J. Eur. Ceram. Soc. 27, 4111 (2007).
20. Panda, P. and Sahoo, B.: PZT to lead free piezo ceramics: a review. Ferroelectrics 474, 128 (2015).
21. Li, J.-F., Wang, K., Zhu, F.-Y., Cheng, L.-Q., and Yao, F.-Z.: (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013).
22. Xu, S. and Li, J.F.: Synthesis and piezoelectricity of single-crystalline (K, Na) NbO3 nanobars. J. Am. Ceram. Soc. 94, 3812 (2011).
23. Cheng, L.-Q., Wang, K., and Li, J.-F.: Synthesis of highly piezoelectric lead-free (K, Na) NbO3 one-dimensional perovskite nanostructures. Chem. Commun. 49, 4003 (2013).
24. Ge, H., Hou, Y., Zhu, M., Wang, H., and Yan, H.: Facile synthesis and high d 33 of single-crystalline KNbO3 nanocubes. Chem. Commun. 41, 5137 (2008).
25. Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., and Acquaye, A.: Operational vs. embodied emissions in buildings—a review of current trends. Energy Build. 66, 232 (2013).
26. Hellweg, S. and Milà i Canals, L.: Emerging approaches, challenges and opportunities in life cycle assessment. Science 344, 1109 (2014).
27. Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., and Acquaye, A.: Integrating economic considerations with operational and embodied emissions into a decision support system for the optimal ranking of building retrofit options. Build. Environ. 72, 82 (2014).
28. Linnen, R., Trueman, D.L., and Burt, R.: Tantalum and niobium. In Critical Metals Handbook, edited by Gunn, G. (John Wiley & Sons, Oxford, 2014), ch. 15.
29. Mackay, D.A. and Simandl, G.J.: Geology, market and supply chain of niobium and tantalum—a review. Mineral. Deposit. 49, 1025 (2014).
30. British Geological Survey: Niobium-Tantalum: definition, mineralogy and deposits (2015). Available from: http://nora.nerc.ac.uk/14327/1/comm_profile_niobium_tantalum%5B1%5D.pdf (accessed November 20, 2016).
31. Globe Metals & Mining: Environmental scoping report and terms reference for environmental impact assessment (2011). Available from: http://www.globemetalsandmining.com.au/Files/Projects/Kanyika/Environmental-Scoping-Report.aspx (accessed November 20, 2016).
32. Globe Metals & Mining: Environmental impact assessment report for the Kanyika niobium project (2012). Available from: http://www.globemetalsandmining.com.au/Files/Projects/Kanyika/enironmental-reports/S0522-KANYIKA-PROJECT-EIA-REPORT-FINAL_REVISION_01.aspx (accessed November 20, 2016).
33. Maeder, M.D., Damjanovic, D., and Setter, N.: Lead free piezoelectric materials. J. Electroceram. 13, 385 (2004).
34. Barltrop, D. and Smith, A.M.: Kinetics of lead interaction with human erythrocytes. Postgrad. Med. J. 51, 770 (1975).
35. Babayigit, A., Ethirajan, A., Muller, M., and Conings, B.: Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247 (2016).
36. Lee, S.H., Jeong, C.K., Hwang, G.-T., and Lee, K.J.: Self-powered flexible inorganic electronic system. Nano Energy 14, 111 (2015).

Are lead-free piezoelectrics more environmentally friendly?

  • T. Ibn-Mohammed (a1) (a2), S. C. L. Koh (a1) (a2), I. M. Reaney (a3), D. C. Sinclair (a3), K. B. Mustapha (a4), A. Acquaye (a5) and D. Wang (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed