Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T00:18:49.138Z Has data issue: false hasContentIssue false

Antibody-conjugated near-infrared luminescent silicon quantum dots for biosensing

Published online by Cambridge University Press:  26 July 2019

Hiroto Yanagawa
Affiliation:
Technology Innovation Division, Panasonic Corporation, Yagumo-naka-machi, Moriguchi, Osaka 570-8501, Japan Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Asuka Inoue
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Hiroshi Sugimoto
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Masahiko Shioi
Affiliation:
Life Solutions Company, Panasonic Corporation, Kadoma, Osaka 571-8686, Japan
Minoru Fujii*
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
*
Address all correspondence to Minoru Fujii at fujii@eedept.kobe-u.ac.jp
Get access

Abstract

A process for bioconjugation of an IgG antibody and silicon quantum dots (Si-QDs) having the luminescence in the near-infrared (NIR) range was developed. For the bioconjugation, the surface of water-soluble all-inorganic Si-QDs was functionalized by using silane-coupling agents. In amino-functionalized Si-QDs, successful conjugation was achieved without strongly affecting the luminescence property. Detailed analyses revealed that Si-QDs are bound covalently to both the light and heavy chains of an IgG antibody. It was also confirmed that the binding property of an IgG antibody with antigen nucleoprotein was not ruined by the process. The successful conjugation of an IgG antibody and NIR luminescent Si-QDs paves the way for designing environmentally friendly bio-sensing and -imaging processes.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tynan, C.J., Clarke, D.T., Coles, B.C., Rolfe, D.J., Martin-Fernandez, M.L., and Webb, S.E.D.: Multicolour single molecule imaging in cells with near infra–red dyes. PLoS One 7, e36265.1e36265.7 (2012).Google Scholar
2.Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., and Nie, S.: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 6372 (2005).Google Scholar
3.Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763775 (2008).Google Scholar
4.Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., and Nie, S.: Luminescent quantum dots for multiplexed biological detection and imaging. Anal. Biotechnol. 13, 4046 (2002).Google Scholar
5.Chan, W.C. and Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 20162018 (1998).Google Scholar
6.Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538544 (2005).Google Scholar
7.Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435446 (2005).Google Scholar
8.Pathak, S., Davidson, M.C., and Silva, G.A.: Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett. 7, 18391845 (2007).Google Scholar
9.Larson, D.R.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 14341436 (2003).Google Scholar
10.Jaiswal, J.K., Goldman, E.R., Mattoussi, H., and Simon, S.M.: Use of quantum dots for live cell imaging. Nat. Methods 1, 7378 (2004).Google Scholar
11.Tsoi, K.M., Dai, Q., Alman, B.A., and Chan, W.C.W.: Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 46, 662671 (2013).Google Scholar
12.Derfus, A.M., Chan, W.C.W., and Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 1118 (2004).Google Scholar
13.Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., and Groneberg, D.A.: The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1, 16 (2006).Google Scholar
14.Liu, J., Erogbogbo, F., Yong, K.-T., Ye, L., Liu, J., Hu, R., Chen, H., Hu, Y., Yang, Y., Yang, J., Roy, I., Karker, N.A., Swihart, M.T., and Prasad, P.N.: Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7, 73037310 (2013).Google Scholar
15.Bhattacharjee, S., Rietjens, I.M.C.M., Singh, M.P., Atkins, T.M., Purkait, T.K., Xu, Z., Regli, S., Shukaliak, A., Clark, R.J., Mitchell, B.S., Alink, G.M., Marcelis, A.T.M., Fink, M.J., Veinot, J.G.C., Kauzlarich, S.M., and Zuilhof, H.: Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5, 48704883 (2013).Google Scholar
16.Michl, J.: Introduction: silicon chemistry. Chem. Rev. 95, 1135 (1995).Google Scholar
17.McVey, B.F.P. and Tilley, R.D.: Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc. Chem. Res. 47, 30453051 (2014).Google Scholar
18.Chinnathambi, S., Chen, S., Ganesan, S., and Hanagata, N.: Silicon quantum dots for biological applications. Adv. Healthcare Mater. 3, 1029 (2014).Google Scholar
19.Peng, F., Su, Y., Zhong, Y., Fan, C., Lee, S.T., and He, Y.: Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47, 612623 (2014).Google Scholar
20.Wang, L., Reipa, V., and Blasic, J.: Silicon nanoparticles as a luminescent label to DNA. Bioconjug. Chem. 15, 409412 (2004).Google Scholar
21.He, Y., Su, Y., Yang, X., Kang, Z., Xu, T., Zhang, R., Fan, C., and Lee, S.-T.: Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J. Am. Chem. Soc. 131, 44344438 (2009).Google Scholar
22.Tu, C.-C., Awasthi, K., Chen, K.-P., Lin, C.-H., Hamada, M., Ohta, N., and Li, Y.: Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long–lived fluorescence. ACS Photonics 4, 13061315 (2017).Google Scholar
23.Robidillo, C.J.T., Aghajamali, M., Faramus, A., Sinelnikov, R., and Veinot, J.G.C.: Interfacing enzymes with silicon nanocrystals through the thiol-ene reaction. Nanoscale 10, 1870618719 (2018).Google Scholar
24.Sugimoto, H., Fujii, M., Fukuda, Y., Imakita, K., and Akamatsu, K.: All-inorganic water-dispersible silicon quantum dots: highly efficient near-infrared luminescence in a wide pH range. Nanoscale 6, 122126 (2014).Google Scholar
25.Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: All-inorganic near-infrared luminescent colloidal silicon nanocrystals: high dispersibility in polar liquid by phosphorus and boron codoping. J. Phys. Chem. C 116, 17969–17674 (2012).Google Scholar
26.Fujii, M., Sugimoto, H., and Imakita, K.: All-inorganic colloidal silicon nanocrystals—surface modification by boron and phosphorus co-doping. Nanotechnology 27, 262001 (2016).Google Scholar
27.Fujii, M., Sugimoto, H., and Kano, S.: Silicon quantum dot with heavily boron and phosphorus codoped shell. Chem. Commun. 54, 43754389 (2018).Google Scholar
28.Sugimoto, H., Yamamura, M., Sakiyama, M., and Fujii, M.: Visualizing a core-shell structure of heavily doped silicon quantum dots by electron microscopy using an atomically thin support film. Nanoscale 10, 73577362 (2018).Google Scholar
29.Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: Codoping n-and p-type impurities in colloidal silicon nanocrystals-controlling luminescence energy from below bulk band gap to visible range. J. Phys. Chem. C 117, 1185011857 (2013).Google Scholar
30.Sugimoto, H., Yamamura, M., Fujii, R., and Fujii, M.: Donor–acceptor pair recombination in size-purified silicon quantum dots. Nano Lett. 18, 72827288 (2018).Google Scholar
31.Inoue, A., Sugimoto, H., Yaku, H., and Fujii, M.: DNA assembly of silicon quantum dots/gold nanoparticle nanocomposites. RSC Adv. 6, 6393363939 (2016).Google Scholar
32.Kanno, T., Kano, S., Sugimoto, H., Tada, Y., and Fujii, M.: Water-dispersible near-infrared luminescent silicon nanocrystals-immobilization on substrate. MRS Commun. 6, 429436 (2016).Google Scholar
33.Liu, N., Prall, B.S., and Klimov, V.I.: Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 128, 1536215363 (2006).Google Scholar
34.Dasog, M., De Los Reyes, G.B., Titova, L.V., Hegmann, F.A., and Veinot, J.G.C.: Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8, 96369648 (2014).Google Scholar
35.Dasog, M., Yang, Z., Regli, S., Atkins, T.M., Faramus, A., Singh, M.P., Muthuswamy, E., Kauzlarich, S.M., Tilley, R.D., and Veinot, J.G.C.: Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 7, 26762685 (2013).Google Scholar
36.Shiohara, A., Hanada, S., Prabakar, S., Fujioka, K., Lim, T.H., Yamamoto, K., Northcote, P.T., and Tilley, R.D.: Chemical reactions on surface molecules attached to silicon quantum dots. J. Am. Chem. Soc. 132, 248253 (2009).Google Scholar
37.Cheng, X., Gondosiswanto, R., Ciampi, S., Reece, P.J., and Gooding, J.J.: One-pot synthesis of colloidal silicon quantum dots and surface functionalization via thiol-ene click chemistry. Chem. Commun. 48, 1187411876 (2012).Google Scholar
38.Oliinyk, B.V., Lysenko, V., and Alekseev, S.: Determining the impact of hydrofluoric acid on surface states of as-prepared and chemically modified Si nanocrystals. RSC Adv. 6, 37233728 (2016).Google Scholar
39.Warner, J.H., Rubinsztein-Dunlop, H., and Tilley, R.D.: Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. J. Phys. Chem. B 109, 1906419067 (2005).Google Scholar
40.Cheng, X., Lowe, S.B., Reece, P.J., and Gooding, J.J.: Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 43, 2680 (2014).Google Scholar
41.Sugimoto, H., Hori, Y., Imura, Y., and Fujii, M.: Charge-transfer-induced photoluminescence enhancement in colloidal silicon quantum dots. J. Phys. Chem. C 121, 1196211967 (2017).Google Scholar
42.Sapparapu, G., Planque, S., Mitsuda, Y., McLean, G., Nishiyama, Y., and Paul, S.: Constant domain-regulated antibody catalysis. J. Biol. Chem. 287, 3609636104 (2012).Google Scholar
43.Rižner, T.L.: Teaching the structure of immunoglobulins by molecular visualization and SDS-PAGE analysis. Biochem. Mol. Biol. Educ. 42, 152159 (2014).Google Scholar
44.He, Y., Zhong, Y., Peng, F., Wei, X., Su, Y., Lu, Y., Su, S., Gu, W., Liao, L., and Lee, S.T.: One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 133, 1419214195 (2011).Google Scholar
45.Du, C., Du, C., Falini, G., and Fermani, S.: Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 307, 14501454 (2005).Google Scholar
46.Nobbmann, U., Connah, M., Fish, B., Varley, P., Gee, C., Mulot, S., Chen, J., Zhou, L., Lu, Y., Sheng, F., Yi, J., and Harding, S.E.: Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol. Genet. Eng. Rev. 24, 117128 (2007).Google Scholar
47.Li, H., Shih, W.Y., and Shih, W.-H.: Highly photoluminescent and stable aqueous ZnS quantum dots. Ind. Eng. Chem. Res. 49, 579582 (2010).Google Scholar
48.Zhu, M., Chang, E., Sun, J., and Drezek, R.A.: Surface modification and functionalization of semiconductor quantum dots through reactive coating of silanes in toluene. J. Mater. Chem. 17, 800805 (2007).Google Scholar
49.Chen, J., Liu, W., Mao, L.-H., Yin, Y.-J., Wang, C.-F., and Chen, S.: Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs. J. Mater. Sci. 49, 73917398 (2014).Google Scholar
50.Park, S., Park, M., Han, P., and Lee, S.: The effect of pH-adjusted gold colloids on the formation of gold clusters over APTMS-coated silica cores. Bull. Korean Chem. Soc. 27, 13411345 (2006).Google Scholar
51.Kulkarni, S.A., Ogale, S.B., and Vijayamohanan, K.P.: Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J. Colloid Interface Sci. 318, 372379 (2008).Google Scholar
52.Kunishima, M., Kawachi, C., Hioki, K., Terao, K., and Tani, S.: Formation of carboxamides by direct condensation of carboxylic acids and amines in alcohols using a new alcohol- and water-soluble condensing agent: DMT-MAM. Tetrahedron 57, 15511558 (2015).Google Scholar
53.Kamra, T., Chaudhary, S., Xu, C., Johansson, N., Montelius, L., Schnadt, J., and Ye, L.: Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane. J. Colloid Interface Sci. 445, 277284 (2015).Google Scholar
54.Guo, X., Peng, J., Yang, J., Peng, F., Yu, H., and Wang, H.: Quantum dot-encoded beads for ultrasensitive detection quantum dot-encoded beads for ultrasensitive detection. Recent Pat. Nanotechnol. 3, 192202 (2009).Google Scholar
Supplementary material: PDF

Yanagawa et al. supplementary material

Yanagawa et al. supplementary material 1

Download Yanagawa et al. supplementary material(PDF)
PDF 371 KB