Skip to main content Accessibility help

Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes

  • Heguang Liu (a1), Jianxi Liu (a2), Ruixuan Jing (a1) and Caiyin You (a1)


Herein, the authors report our pioneering demonstration of the anisotropic thermal properties of black phosphorus (BP) nanoflakes. The nanoflakes were produced using a scotch tape-based mechanical exfoliation technique. Their thickness was characterized using Atomic Force Microscopy The anisotropic direction of the nanoflakes was determined by the Raman Spectroscopy equipped with a polarized laser. Then, a temperature-dependent Raman spectroscopy method was utilized to study the thermal transport properties of the BP nanoflakes. The results indicated that the thermal conductivities of zigzag BP and armchair nanoflakes are 30.6 and 12.6 W/m·K, respectively. This fundamental thermal study gives insight into the future fabrication of nanoscale electronic devices with thermal properties that can be well controlled.


Corresponding author

Address all correspondence to Heguang Liu at


Hide All

These authors contributed equally to this work.



Hide All
1.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
2.Li, Y. and Chopra, N.: Progress in large-scale production of graphene. Part 2: vapor methods. JOM 67, 44 (2015).
3.Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.Y., Galli, G., and Wang, F.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).
4.Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007).
5.Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett 105, 136805 (2010).
6.Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., and Van der Zant, S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).
7.Xia, F., Wang, H., and Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).
8.Li, Q., Huang, H., Chen, Z., Huang, X., Deng, K., Luo, S., and Quan, Z.: Thickness-dependent structural stability and anisotropy of black phosphorus. Adv. Electron. Mater. 5, 1800712 (2019).
9.Liu, Y., Low, T., and Ruden, P.P.: Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities. Phys. Rev. B 93, 165402 (2016).
10.Favron, A., Gaufrès, E., Fossard, F., Lévesque, P., Phaneuf-L'Heureux, A., Tang, N., and Martel, R.: Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects. arXiv Preprint 1408, 0345 (2014).
11.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).
12.Tran, V., Soklaski, R., Liang, Y., and Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).
13.Li, Y., Shi, W., and Chopra, N.: Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100, 165 (2016).
14.Li, Y., Dykes, J., Gilliam, T., and Chopra, N.: A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles. Nanoscale 9, 5263 (2017).
15.Kang, J., Wood, J.D., Wells, S.A., Lee, J.-H., Liu, X., Chen, K.-S., and Hersam, M.C.: Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596 (2015).
16.Liu, S., Huo, N., Gan, S., Li, Y., Wei, Z., Huang, B., and Chen, H.: Thickness-dependent Raman spectra, transport properties and infrared photoresponse of few-layer black phosphorus. J. Mater. Chem. C 3, 10974 (2015).
17.Li, Y., Hu, Z., Lin, S., Lai, S.K., Ji, W., and Lau, S.P.: Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 27, 1600986 (2017).
18.Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., and Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014).
19.Li, Y., Moy, E.C., Murthy, A.A., Hao, S., Cain, J.D., Hanson, E.D., and Chen, X.: Large-scale fabrication of MoS2 ribbons and their light-induced electronic/thermal properties: dichotomies in the structural and defect engineering. Adv. Funct. Mater. 28, 1704863 (2018).
20.Chen, P., Li, N., Chen, X., Ong, W.J., and Zhao, X.: The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5, 014002 (2017).
21.Tao, J., Shen, W., Wu, S., Liu, L., Feng, Z., Wang, C., and Pang, W.: Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9, 1136211370 (2015).
22.Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).
23.Li, Y. and Chopra, N.: Chemically modified and doped carbon nanotube-based nanocomposites with tunable thermal conductivity gradient. Carbon 77, 675 (2014).
24.Yan, R., Simpson, J.R., Bertolazzi, S., Brivio, J., Watson, M., Wu, X., and Xing, H.G.: Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986 (2014).
25.Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011).10.1038/nmat3064
26.Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., and Xia, F.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015).
27.Mao, N., Zhang, S., Wu, J., Tian, H., Wu, J., Xu, H., and Zhang, J.: Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 11, 3154 (2018).
28.Zhu, W., Liang, L., Roberts, R.H., Lin, J.F., and Akinwande, D.: Anisotropic electron–phonon interactions in angle-resolved Raman study of strained black phosphorus. ACS Nano 12, 12512 (2018).
29.Lee, S., Yang, F., Suh, J., Yang, S., Lee, Y., Li, G., and Ko, C.: Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573 (2015).
30.Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R.P., Lundstrom, M.S., and Xu, X.: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).
31.Jeon, S.G., Shin, H., Jaung, Y.H., Ahn, J., and Song, J.Y.: Thickness-dependent and anisotropic thermal conductivity of black phosphorus nanosheets. Nanoscale 10, 5985 (2018).
32.Islam, A., van den Akker, A., and Feng, P.X.L.: Anisotropic thermal conductivity of suspended black phosphorus probed by opto-thermomechanical resonance spectromicroscopy. Nano Lett. 18, 7683 (2018).

Related content

Powered by UNSILO

Anisotropic thermal conductivity in direction-specific black phosphorus nanoflakes

  • Heguang Liu (a1), Jianxi Liu (a2), Ruixuan Jing (a1) and Caiyin You (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.