Skip to main content Accessibility help
×
Home

An integral equation based domain decomposition method for solving large-size substrate-supported aperiodic plasmonic array platforms

  • Shifei Tao (a1), Jierong Cheng (a1) and Hossein Mosallaei (a1)

Abstract

We propose a surface integral equation simulation scheme which incorporates the integral equation fast Fourier transform accelerative algorithm and domain decomposition method. Such scheme provides efficient and accurate solutions for substrate-supported non-periodic plasmonic array platforms with large number of building blocks and complex element geometry. The effect of array defects can be systematically and successfully studied taking advantage of the considerable flexibility of the domain decomposition approach. The proposed model will be of great advantage for fast and accurate characterization of graded-pattern plasmonic materials and metasurfaces.

Copyright

Corresponding author

Address all correspondence to Hossein Mosallaei at hosseinm@ece.neu.edu

References

Hide All
1. Gramotnev, D.K. and Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83 (2010).
2. Sotiriou, G.A.: Biomedical applications of multifunctional plasmonic nanoparticles. Wires Nanomed. Nanobiotechnol. 5, 19 (2013).
3. Dong, P., Lin, Y., Deng, J., and Di, J.: Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors. ACS Appl. Mater. Interfaces 5, 2392 (2013).
4. Cheng, J. and Mosallaei, H.: Optical metasurfaces for beam scanning in space. Opt. Lett. 39, 2719 (2014).
5. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302 (1966).
6. Jin, J.M.: Finite Element Method in Electromagnetics (John Wiley & Sons, Hoboken, NJ, 2014).
7. Harrington, R.F. and Harrington, J.L.: Field Computation by Moment Methods (Oxford University Press, Oxford, 1996).
8. Chew, W.C., Michielssen, E., Song, J.M., and Jin, J.M.: Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, Inc., Norwood, MA, 2001).
9. Ergül, Ö. and Gürel, L.: Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems. IEEE Trans. Antennas Propag. 56, 2335 (2008).
10. Seo, S.M. and Lee, J.F.: A fast IE-FFT algorithm for solving PEC scattering problems. IEEE Trans. Magn. 41, 1476 (2005).
11. Börm, S., Grasedyck, L., and Hackbusch, W.: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27, 405 (2003).
12. Peng, Z., Rawat, V., and Lee, J.F.: One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 229, 1181 (2010).
13. Wang, X., Peng, Z., Lim, K.H., and Lee, J.F.: Multisolver domain decomposition method for modeling EMC effects of multiple antennas on a large air platform. IEEE Trans. EMC 54, 375 (2012).
14. Peng, Z., Wang, X.C., and Lee, J.F.: Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects. IEEE Trans. Antennas Propag. 59, 3328 (2011).
15. Jiang, M., Hu, J., Tian, M., Zhao, R., Wei, X., and Nie, Z.: Solving scattering by multilayer dielectric objects using JMCFIE–DDM–MLFMA. IEEE Antennas Wirel. Propag. Lett. 13, 1132 (2014).
16. Esquius-Morote, M., Gomez-Diaz, J.S., and Perruisseau-Carrier, J.: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. Terahertz Sci. Technol. 4, 116 (2014).
17. Jun, Y.C., Gonzales, E., Reno, J.L., Shaner, E.A., Gabbay, A., and Brener, I.: Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 20, 1903 (2012).
18. Ansari-Oghol-Beig, D. and Mosalaei, H.: Array IE-FFT solver for simulation of supercells and aperiodic penetrable metamaterials. J. Comput. Theor. Nanosci. 12, 3864 (2015).
19. Li, M.K. and Chew, W.C.: Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme. IEEE Trans. Antennas Propag. 56, 2389 (2008).
20. Northeastern University Research Computing. http://nuweb12.neu.edu/rc/?page_id=27.
21. Carvalho, L.M., Gratton, S., Lago, R., and Vasseur, X.: A flexible generalized conjugate residual method with inner orthogonalization and deflated restarting. SIAM J. Matrix Anal. Appl. 32, 1212 (2011).
22. Diroll, B.T., Gordon, T.R., Gaulding, E.A., Klein, D.R., Paik, T., Yun, H.J., Goodwin, E.D., Damodhar, D., Kagan, C.R., and Murray, C.B.: Synthesis of N-type plasmonic oxide nanocrystals and the optical and electrical characterization of their transparent conducting films. Chem. Mater. 26, 4579 (2014).
23. Gordon, T.R., Cargnello, M., Paik, T., Mangolini, F., Weber, R.T., Fornasiero, P., and Murray, C.B.: Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 134, 6751 (2012).
24. Ashcroft, N.W., Mermin, N.D., and Rodriguez, S.: Solid state physics. Am. J. Phys. 46, 116 (1978).
25. Caldwell, J.D., Glembock, O.J., Francescato, Y., Sharac, N., Giannini, V., Bezares, F.J., Long, J.P., Owrutsky, J.C., Vurgaftman, I., Tischler, J.G., Wheeler, V.D., Bassim, N.D., Shirey, L.M., Kasica, R., and Maier, S.A.: Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690 (2013).
26. Cheng, J., Wang, W.L., Mosallaei, H., and Kaxiras, E.: Surface plasmon engineering in graphene functionalized with organic molecules: a multiscale theoretical investigation. Nano Lett. 14, 50 (2013).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed