Skip to main content Accessibility help
×
Home

An informatics software stack for point defect-derived opto-electronic properties: the Asphalt Project

  • Jonathon N. Baker (a1), Preston C. Bowes (a1), Joshua S. Harris (a1) and Douglas L. Irving (a1)

Abstract

Computational acceleration of performance metric-based materials discovery via high-throughput screening and machine learning methods is becoming widespread. Nevertheless, development and optimization of the opto-electronic properties that depend on dilute concentrations of point defects in new materials have not significantly benefited from these advances. Here, the authors present an informatics and simulation suite to computationally accelerate these processes. This will enable faster and more fundamental materials research, and reduce the cost and time associated with the materials development cycle. Analogous to the new avenues enabled by current first-principles-based property databases, this type of framework will open entire new research frontiers as it proliferates.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An informatics software stack for point defect-derived opto-electronic properties: the Asphalt Project
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An informatics software stack for point defect-derived opto-electronic properties: the Asphalt Project
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An informatics software stack for point defect-derived opto-electronic properties: the Asphalt Project
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to Douglas L. Irving at dlirving@ncsu.edu

References

Hide All
1.Holdren, J.P., Kalil, T., and Wadia, C.: Materials Genome Initiative for Global Competitiveness (National Science and Technology Council OSTP, Washington, USA, 2011).
2.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A.: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).10.1063/1.4812323
3.Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., and Wolverton, C.: Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501 (2013).
4.Curtarolo, S., Setyawan, W., Hart, G.L., Jahnatek, M., Chepulskii, R.V., Taylor, R.H., Wang, S., Xue, J., Yang, K., Levy, O., Mehl, M.J., Stokes, H.T., Demchenko, D.O., and Morgan, D.: AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218 (2012).
5.Ye, W., Chen, C., Dwaraknath, S., Jain, A., Ong, S.P., and Persson, K.A.: Harnessing the Materials Project for machine-learning and accelerated discovery. MRS Bull. 43, 664 (2018).
6.Toher, C., Oses, C., Plata, J.J., Hicks, D., Rose, F., Levy, O., de Jong, M., Asta, M., Fornari, M., Nardelli, M.B., and Curtarolo, S.: Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Phys. Rev. Mater. 1, 015401 (2017).
7.Jain, A., Shin, Y., and Persson, K.A.: Computational predictions of energy materials using density functional theory. Nat. Rev. Mater 1, 15004 (2016).
8.Alberi, K., Nardelli, M.B., Zakutayev, A., Mitas, L., Curtarolo, S., Jain, A., Fornari, M., Marzari, N., Takeuchi, I., Green, M.L., Kanatzidis, M., Toney, M.F., Butenko, S., Meredig, B., Lany, S., Kattner, U., Davydov, A., Toberer, E.S., Stevanovic, V., Walsh, A., Park, N.-G., Aspuru-Guzik, A., Tabor, D.P., Nelson, J., Murphy, J., Setlur, A., Gregoire, J., Li, H., Xiao, R., Ludwig, A., Martin, L.W., Rappe, A.M., Wei, S.-H., and Perkins, J.: The 2019 materials by design roadmap. J. Phys. D: Appl. Phys. 52, 013001 (2019).10.1088/1361-6463/aad926
9.Broberg, D., Medasani, B., Zimmermann, N.E., Yu, G., Canning, A., Haranczyk, M., Asta, M., and Hautier, G.: PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165 (2018).10.1016/j.cpc.2018.01.004
10.Baker, J.N., Bowes, P.C., Long, D.M., Moballegh, A., Harris, J.S., Dickey, E.C., and Irving, D.L.: Defect mechanisms of coloration in Fe-doped SrTiO3 from first principles. Appl. Phys. Lett. 110, 122903 (2017).10.1063/1.4978861
11.Bowes, P.C., Baker, J.N., Harris, J.S., Behrhorst, B.D., and Irving, D.L.: Influence of impurities on the high temperature conductivity of SrTiO3. Appl. Phys. Lett. 112, 022902 (2018).10.1063/1.5000363
12.Baker, J.N., Bowes, P.C., Harris, J.S., and Irving, D.L.: Mechanisms governing metal vacancy formation in BaTiO3 and SrTiO3. J. Appl. Phys. 124, 114101 (2018).
13.Harris, J.S., Baker, J.N., Gaddy, B.E., Bryan, I., Bryan, Z., Mirrieless, K.J., Collazo, R., Sitar, Z., and Irving, D.L.: On compensation in Si-doped AlN. Appl. Phys. Lett. 112, 152101 (2018).
14.Baker, J.N., Bowes, P.C., and Irving, D.L.: Hydrogen solubility in donor-doped SrTiO3 from first principles. Appl. Phys. Lett. 113, 132904 (2018).10.1063/1.5047793
15.Heyd, J., Scuseria, G.E., and Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).
16.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
17.Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., and Van De Walle, C.G.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014).
18.Chevrier, V.L., Ong, S.P., Armiento, R., Chan, M.K., and Ceder, G.: Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 82, 075122 (2010).10.1103/PhysRevB.82.075122
19.Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter Mater. Phys. 47, 558 (1993).10.1103/PhysRevB.47.558
20.Van de Walle, C.G., Laks, D., Neumark, G., and Pantelides, S.: First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. Phys. Rev. B 47, 9425 (1993).10.1103/PhysRevB.47.9425
21.Mueller, K., Von Waldkirch, T., Berlinger, W., and Faughnan, B.: Photochromic Fe5+ (3d3) in SrTiO3 evidence from paramagnetic resonance. Solid State Commun. 9, 1097 (1971).
22.Baiatu, T., Waser, R., and Haerdtl, K.-H.: dc Electrical Degradation of Perovskite-Type Titanates: III, A Model of the Mechanism. J. Am. Ceram. Soc. 73, 1663 (1990).10.1111/j.1151-2916.1990.tb09811.x
23.Chan, N.-H., Sharma, R., and Smyth, D.M.: Nonstoichiometry in SrTiO3. J. Electrochem. Soc. 128, 1762 (1981).
24.Mehnke, F., Wernicke, T., Pingel, H., Kuhn, C., Reich, C., Kueller, V., Knauer, A., Lapeyrade, M., Weyers, M., and Kneissl, M.: Highly conductive n-AlxGa1-xN layers with aluminum mole fractions above 80%. Appl. Phys. Lett. 103, 212109 (2013).
25.Taniyasu, Y., Kasu, M., and Kobayashi, N.: Intentional control of n-type conduction for Si-doped AlN and AlxGa1-xN (.42≤x<1). Appl. Phys. Lett. 81, 1255 (2002).10.1063/1.1499738
26.Uedono, A., Ishibashi, S., Keller, S., Moe, C., Cantu, P., Katona, T., Kamber, D., Wu, Y., Letts, E., Newman, S., Nakamura, S., Speck, J.S., Mishra, U.K., DenBaars, S.P., Onuma, T., and Chichibu, S.F.: Vacancy-oxygen complexes and their optical properties in AlN epitaxial films studied by positron annihilation. J. Appl. Phys. 105, 054501 (2009).
27.Bryan, I., Bryan, Z., Washiyama, S., Reddy, P., Gaddy, B.E., Sarkar, B., Breckenridge, M.H., Guo, Q., Graziano, M.B., Tweedie, J., Mita, S., Irving, D.L., Collazo, R., and Sitar, Z.: Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Appl. Phys. Lett. 112, 062102 (2018).

An informatics software stack for point defect-derived opto-electronic properties: the Asphalt Project

  • Jonathon N. Baker (a1), Preston C. Bowes (a1), Joshua S. Harris (a1) and Douglas L. Irving (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed