Skip to main content Accessibility help

Achieving antimicrobial activity through poly(N-methylvinylimidazolium) iodide brushes on binary-grafted polypropylene suture threads

  • F. López-Saucedo (a1), G.G. Flores-Rojas (a1), E. Bucio (a1), C. Alvarez-Lorenzo (a2), A. Concheiro (a2) and O. González-Antonio (a3)...


Harnessing the properties of imidazolium species, antimicrobial activity against Gram-negative and Gram-positive bacteria was attained by binary-grafting 2-hydroxyethyl methacrylate (HEMA) or N-isopropylacrylamide, followed by N-vinylimidazole onto polypropylene (PP) monofilaments (sutures) using 60Co γ-rays. Ulterior functionalization with methyl iodide was carried out to endow brushes with antimicrobial activity on the PP surface. The PP-grafted sutures were characterized by means of Fourier-transform infrared spectroscopy attenuated total reflection, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis, and regarding the mechanical properties and the responsiveness to pH and temperature. Tests were performed on Escherichia coli and Staphylococcus aureus achieving large inhibition zones.


Corresponding author

Address all correspondence to F. López-Saucedo and E. Bucio at;


Hide All
1. Cao, P.-F., Mangadlao, J.D., and Advincula, R.C.: Stimuli-responsive polymers and their potential applications in oil-gas industry. Polym. Rev. 55, 706 (2015).
2. Guragain, S., Bastakoti, B.P., Malgras, V., Nakashima, K., and Yamauchi, Y.: Multi-stimuli-responsive polymeric materials. Chem. A, Eur. J. 21, 13164 (2015).
3. Cao, Z.Q. and Wang, G.J.: Multi-stimuli-responsive polymer materials: particles, films, and bulk gels. Chem. Rec. 16, 1398 (2016).
4. Akimoto, J., Nakayama, M., Sakai, K., Yamato, M., and Okano, T.: Synthesis of terminal-functionalized thermoresponsive diblock copolymers using biodegradable macro-RAFT agents. Polym. J. 45, 233 (2012).
5. Sedláček, O., Černoch, P., Kučka, J., Konefal, R., Štěpánek, P., Vetrík, M., Lodge, T.P., and Hrubý, M.: Thermoresponsive polymers for nuclear medicine: which polymer is the best? Langmuir 32, 6115 (2016).
6. Liu, S., Maheshwari, R., and Kiick, K.L.: Polymer-based therapeutics. Macromolecules 42, 3 (2009).
7. Alvarez-Lorenzo, C. and Concheiro, A.: Smart drug delivery systems: from fundamentals to the clinic. Chem. Commun. 50, 7743 (2014).
8. Feng, C., Li, Y., Yang, D., and Hu, J.: Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem. Soc. Rev. 40, 1282 (2011).
9. Stuart, M.A.C., Huck, W.T.S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., and Minko, S.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101 (2010).
10. Alvarez-Lorenzo, C., Bucio, E., Burillo, G., and Concheiro, A.: Medical devices modified at the surface by g-ray grafting for drug loading and delivery. Expert Opin. Drug Deliv. 7, 173 (2010).
11. Decker, C.: The use of UV irradiation in polymerization. Polym. Int. 45, 133 (1998).
12. Minko, S.: Chapter 93 Grafting on solid surfaces: “grafting to” and “grafting from” methods. In Polymer Surfaces and Interfaces: Characterization, Modification and Applications, edited by Stamm, M. (Springer, Berlin, 2008), p. 215.
13. Maitz, M.F.: Applications of synthetic polymers in clinical medicine. Biosurf, Biotribol. 1, 161 (2015).
14. Caner, H., Yilmaz, E., and Yilmaz, O.: Synthesis, characterization and antibacterial activity of poly(N-vinylimidazole) grafted chitosan. Carbohydr. Polym. 69, 318 (2007).
15. López-Saucedo, F., Alvarez-Lorenzo, C., Concheiro, A., and Bucio, E.: Radiation-grafting of vinyl monomers separately onto polypropylene monofilament sutures. Radiat. Phys. Chem. 132, 1 (2017).
16. Gupta, B., Anjum, N., Gulrez, S.K.H., and Singh, H.: Development of antimicrobial polypropylene sutures by graft copolymerization. II. Evaluation of physical properties, drug release, and antimicrobial activity. J. Appl. Polym. Sci. 103, 3534 (2007).
17. Modjinou, T., Rodriguez-Tobias, H., Morales, G., Versace, D.-L., Langlois, V., Grande, D., and Renard, E.: UV-cured thiol–ene eugenol/ZnO composite materials with antibacterial properties. RSC Adv. 6, 88135 (2016).
18. Rodríguez-Tobías, H., Morales, G., Ledezma, A., Romero, J., Saldívar, R., Langlois, V., Renard, E., and Grande, D.: Electrospinning and electrospraying techniques for designing novel antibacterial poly(3-hydroxybutyrate)/zinc oxide nanofibrous composites. J. Mater. Sci. 51, 8593 (2016).
19. Humphreys, B.A., Willott, J.D., Murdoch, T.J., Webber, G.B., and Wanless, E.J.: Specific ion modulated thermoresponse of poly(N-isopropylacrylamide) brushes. Phys. Chem. Chem. Phys. 18, 6037 (2016).
20. Lei, C., Kee, L.Y., Yanawut, M., Soo, T.K., Sanghiran, L.V., and Abd, R.N.: Synthesis, characterization, and theoretical study of an acrylamide-based magnetic molecularly imprinted polymer for the recognition of sulfonamide drugs. e-Polymers 15, 141 (2015).
21. Costache, A.D., Ghosh, J., Knight, D.D., and Kohn, J.: Computational methods for the development of polymeric biomaterials. Adv. Eng. Mater. 12, B3 (2010).
22. Wojnecki, C. and Green, S.: A computational study into the use of polyacrylamide gel and A-150 plastic as brain tissue substitutes for boron neutron capture therapy. Phys. Med. Biol. 46, 1399 (2001).
23. Mavroudakis, E., Cuccato, D., and Moscatelli, D.: On the use of quantum chemistry for the determination of propagation, copolymerization, and secondary reaction kinetics in free radical polymerization. Polymers 7, 1789 (2015).
24. Anisimov, Y.A., Danilenko, M.A., and Anisimov, Y.N.: Copolymerization of modified oligoesteracrylates with oligomeric butadiene rubber. Russ. J. Appl. Chem. 86, 289 (2013).
25. Morales-Wiemer, E.A., Macossay, J., and Bucio, E.: Radiation grafting of N,N’-dimethylacrylamide and 2-hydroxyethylmethacrylate onto polypropylene films by one step method. Radiat. Phys. Chem. 84, 166 (2013).
26. Marestoni, L.D., Wong, A., Feliciano, G.T., Marchi, M.R.R., Tarley, C.R.T., and Sotomayor, M.D.P.T.: Semi-empirical quantum chemistry method for pre-polymerization rational design of ciprofloxacin imprinted polymer and adsorption studies. J. Braz. Chem. Soc. 27, 109 (2016).
27. De Sterck, B., Vaneerdeweg, R., Du Prez, F., Waroquier, M., and Van Speybroeck, V.: Solvent effects on free radical polymerization reactions: the influence of water on the propagation rate of acrylamide and methacrylamide. Macromolecules 43, 827 (2010).
28. Caimmi, P.P., Sabbatini, M., Fusaro, L., Borrone, A., and Cannas, M.: A study of the mechanical properties of ePTFE suture used as artificial mitral chordate. J. Card. Surg. 31, 498 (2016).
29. Oh, K.S., Han, S.K., Choi, Y.W., Lee, J.H., Lee, J.Y., and Yuk, S.H.: Hydrogen-bonded polymer gel and its application as a temperature-sensitive drug delivery system, Biomaterials. Biomaterials 25, 2393 (2004).
30. Horta, A., Molina, M.J., Gómez-Antón, M.R., and Piérola, I.F.: The pH inside a swollen polyelectrolyte gel: poly(N-vinylimidazole). J. Phys. Chem. B 112, 10123 (2008).
31. Meléndez-Ortiz, H.I., Alvarez-Lorenzo, C., Concheiro, A., Jiménez-Páez, V.M., and Bucio, E.: Modification of medical grade PVC with N-vinylimidazole to obtain bactericidal surface. Radiat. Phys. Chem. 119, 37 (2016).
Type Description Title
Supplementary materials

López-Saucedo et al supplementary material
López-Saucedo et al supplementary material 1

 Word (277 KB)
277 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed