Skip to main content Accessibility help
×
Home

Strong piezoelectricity in individual GaN nanowires

Published online by Cambridge University Press:  27 September 2011

Majid Minary-Jolandan
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208-3111
Rodrigo A. Bernal
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208-3111
Horacio D. Espinosa
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208-3111
Corresponding
E-mail address:
Get access

Abstract

GaN nanowires are promising building blocks for future nanoelectronics, optoelectronic devices, and nanogenerators. Here, we report on strong piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric constant using piezoresponse force microscopy. Our experimental results show that individual c-axis GaN nanowires, with a characteristic dimension as small as 65 nm, show a shear piezoelectric constant of d15 ~ 10 pm/V, which is several times that measured in bulk. The revealed strong piezoelectricity could open promising opportunities for application of GaN nanowires in nanowire-based sensors and generators for self-powered nanodevices.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Yang, P., Yan, R., and Fardy, M.: Semiconductor nanowire: what's next? Nano Lett. 10, 15291536 (2010).CrossRefGoogle ScholarPubMed
2.Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).CrossRefGoogle ScholarPubMed
3.Yang, R., Qin, Y., Dai, L., and Wang, Z.L.: Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 3439 (2009).CrossRefGoogle ScholarPubMed
4.Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., and McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 13311336 (2011).CrossRefGoogle ScholarPubMed
5.Agrawal, R., Peng, B., Gdoutos, E.E., and Espinosa, H.D.: Elasticity size effects in ZnO nanowires—a combined experimental-computational approach. Nano Lett. 8, 36683674 (2008).CrossRefGoogle Scholar
6.Bernal, R.A., Agrawal, R., Peng, B., Bertness, K.A., Sanford, N.A., Davydov, A.V., and Espinosa, H.D.: Effect of growth orientation and diameter on the elasticity of GaN Nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Lett. 11, 548555 (2011).CrossRefGoogle ScholarPubMed
7.Huang, Y., Duan, X., Cui, Y., and Lieber, C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101104 (2002).CrossRefGoogle Scholar
8.Zhong, Z., Qian, F., Wang, D., and Lieber, C.M.: Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343346 (2003).CrossRefGoogle Scholar
9.Johnson, J.C., Choi, H.-J., Knutsen, K.P., Schaller, R.D., Yang, P., and Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106110 (2002).CrossRefGoogle ScholarPubMed
10.Huang, C.-T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., Chen, L.-J., and Wang, Z.L.: GaN nanowire arrays for high-output nanogenerators. J. Am. Chem. Soc. 132(13), 47664771 (2010).CrossRefGoogle ScholarPubMed
11.Xu, X., Potie, A., Songmuang, R., Lee, J., Bercu, B., Baron, T., Salem, B., and Montes, L.: An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: application to GaN nanowires. Nanotechnology 22, 105704 (2011).CrossRefGoogle ScholarPubMed
12.Güthner, P. and Dransfeld, K.: Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137 (1992).CrossRefGoogle Scholar
13.Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., and Tokumoto, H.: Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 43094312 (1995).CrossRefGoogle ScholarPubMed
14.Zhao, M.-H., Wang, Z.-L., and Mao, S.X.: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587590 (2004).CrossRefGoogle Scholar
15.Wang, J., Sandu, C.S., Colla, E., Wang, Y., Ma, W., Gysel, R., Trodahl, H.J., Setterb, N., and Kuball, M.: Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Appl. Phys. Lett. 90, 133107 (2007).Google Scholar
16.Yun, W.S., Urban, J.J., Gu, Q., and Park, H.: Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447450 (2002).CrossRefGoogle Scholar
17.Wang, Z., Hu, J., and Yua, M.-F.: One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett. 89, 263119 (2006).CrossRefGoogle Scholar
18.Minary-Jolandan, M. and Yu, M.-F.: Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3, 18591863 (2009).CrossRefGoogle Scholar
19.Rodriguez, B.J., Gruverman, A., Kingon, A.I., and Nemanich, R.J.: Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials. J. Crystal Growth 246, 252258 (2002).CrossRefGoogle Scholar
20.Agrawal, R. and Espinosa, H.D.: Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 11(2), 786790 (2011).CrossRefGoogle ScholarPubMed
21.Bdikin, I.K., Gracio, J., Ayouchi, R., Schwarz, R., and Kholkin, A.L.: Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method. Nanotechnology 21, 235703 (2010).CrossRefGoogle ScholarPubMed
22.Bertness, K.A., Roshko, A., Mansfield, L.M., Harvey, T.E., and Sanford, N.A.: Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Crystal Growth 310, 31543158 (2008).CrossRefGoogle Scholar
23.Minary-Jolandan, M. and Yu, M.-F.: Nanoscale characterization of isolated individual type I collagen fibrils: Polarization and piezoelectricity. Nanotechnology 20, 085706 (2009).CrossRefGoogle ScholarPubMed
24.Bernardini, F. and Fiorentini, V.: First-principles calculation of the piezoelectric tensor d of III–V nitrides. Appl. Phys. Lett. 80, 4145 (2002).CrossRefGoogle Scholar
25.Muensit, S., Goldys, E.M., and Guy, I.L.: Shear piezoelectric coefficients of gallium nitride and aluminum nitride. Appl. Phys. Lett. 75, 3965 (1999).CrossRefGoogle Scholar

Minary-Jolandan Supplementary Material

Minary-Jolandan Supplementary Material

File 1 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 16
Total number of PDF views: 75 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-v228l Total loading time: 0.72 Render date: 2021-01-28T03:13:25.907Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Strong piezoelectricity in individual GaN nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Strong piezoelectricity in individual GaN nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Strong piezoelectricity in individual GaN nanowires
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *