Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T21:01:56.149Z Has data issue: false hasContentIssue false

Morphological effects on the third-order nonlinear optical response of polydiacetylene nanofibers

Published online by Cambridge University Press:  05 August 2019

Haruki Maki
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Rie Chiba
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Tsunenobu Onodera
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Hitoshi Kasai
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Rodrigo Sato
Affiliation:
Hydrogen Materials Engineering Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba 305-0003, Japan
Yoshihiko Takeda
Affiliation:
Hydrogen Materials Engineering Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba 305-0003, Japan
Hidetoshi Oikawa*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
*
Address all correspondence to Hidetoshi Oikawa at hidetoshi.oikawa.e8@tohoku.ac.jp
Get access

Abstract

The third-order nonlinear optical (NLO) susceptibility for morphologically controlled polydiacetylene (PDA) nanocrystals (NCs) and PDA nanofibers (NFs) have been determined for the first time by the experimental combination of transient pump-probe spectroscopy and spectroscopic ellipsometry. The figure of the merit of PDA NFs was much superior to PDA NCs and/or PDA bulk crystals, and the excitonic relaxation time was of order of sub-pico second. Namely, this is the first case to reveal the morphological effect on NLO response. PDA NFs having the long effective π-conjugation length are one of the most promising organic third-order NLO nanomaterials toward the photonic device application.

Type
Research Letters
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rinkevicius, Z., Li, X., Sandberg, J.A.R., and Agren, H.: Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory. Phys. Chem. Chem. Phys. 16, 8981 (2014).Google Scholar
2.Aljada, M., Alameh, K.E., Lee, Y.-T., and Chung, I.I.-S.: High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors. Opt. Exp. 14, 6823 (2006).Google Scholar
3.Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Gotzinger, S., and Sandoghdar, V.: A single-molecule optical transistor. Nature 460, 76 (2009).Google Scholar
4.Luan, F., Gu, B., Gomes, A.S.L., Yong, K.T., Wen, S.C., and Prasad, P.N.: Lasing in nanocomposite random media. Nano Today 10, 168 (2015).Google Scholar
5.Okamoto, R., O'Brien, J.L., Hofmann, H.F., Nagata, T., Sasaki, K., and Takeuchi, S.: An entanglement filter. Science 323, 483 (2009).Google Scholar
6.Smith, S.D.: Laser, nonlinear optics and optical computers. Nature 316, 319 (1985).Google Scholar
7.Oikawa, H., Onodera, T., Masuhara, A., Kasai, H., and Nakanishi, H.: New class materials of organic-inorganic hybridized nanocrystals/nanoparticles, and their assembled micro- and nano-structure toward photonics. Adv. Polym. Sci. 231, 147 (2010).Google Scholar
8.Yarimaga, O., Jaworski, J., Yoon, B., and Kim, J.-M.: Polydiacetylenes: supramolecular smart material with a structural hierarchy for sensing, imaging and display applications. Chem. Commun. 48, 2469 (2012).Google Scholar
9.Wegner, G.: Solid-state polymerization mechanisms. Pure Appl. Chem. 49, 443 (1997).Google Scholar
10.Matsuda, H., Molyneux, S., Kar, A.K., Wherrett, B.S., Okada, S., and Nakanishi, H.: Third-order nonlinear optical properties of polydiacetylene crystal. J. Photopolym. Sci. Technol. 6, 261 (1993).Google Scholar
11.Giorgetti, E., Margheri, G., Sottini, S., Chen, X., Cravino, A., Comoretto, D., Cuniberti, C., Dell'Erba, C., and Dellepiane, G.: Linear and nonlinear characterization of polyDCHD-HS films. Synth. Met. 115, 257 (2000).Google Scholar
12.Oikawa, H.: Hybridized organic nanocrystyals for optically functional materials. Bull. Chem. Soc. Jpn. 84, 233 (2011).Google Scholar
13.Oikawa, H., Kasai, H., and Nakanishi, H.: Fabrication of organic microcrystals and their optical properties. In Anisotropic Organic Materials—Approaches to Polar Order, ACS Symposium Series 798, edited by Glaser, R., and Kaszynski, P. (ACS, Washington, 2001), pp. 158168.Google Scholar
14.Oikawa, H. and Nakanishi, H.: Reprecipitation method for organic nanocrystals. In Nano Science and Technology—Single Organic Nanoparticles, edited by Masuhara, H., Nakanishi, H. and Sasaki, K. (Springer, Berlin, 2003), pp. 1731.Google Scholar
15.Oikawa, H., Mitsui, T., Onodera, T., Kasai, H., Nakanishi, H., and Sekiguchi, T.: Crystal size dependence of fluorescence spectra from Perylene nanocrystals evaluated by scanning near-field optical microscopy. Jpn. J. Appl. Phys. 42, L111 (2003).Google Scholar
16.Volkov, V.V., Asahi, T., Masuhara, H., Masuhara, A., Kasai, H., Oikawa, H., and Nakanishi, H.: Size-dependent optical properties of polydiacetylene nanocrystals. J. Phys. Chem. B 108, 7674 (2004).Google Scholar
17.Iimori, Y., Onodera, T., Kasai, H., Mitsuishi, M., Miyashita, T., and Oikawa, H.: Fabrication of pseudo single crystalline thin films composed of polydiacetylene nanofibers and their optical properties. Opt. Mater. Exp. 7, 2218 (2017).Google Scholar
18.Sato, R., Momida, H., Ohnuma, M., Sasase, M., Ohno, T., Kishimoto, N., and Takeda, Y.: Experimental dispersion of the third order optical susceptibility of Ag nanoparticles. J. Opt. Soc. Am. B 29, 2410 (2012).Google Scholar
19.Sato, R., Ohnuma, M., Oyoshi, K., and Takeda, Y.: Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization. Phys. Rev. B 90, 125417 (2014).Google Scholar
20.Sato, R., Ohnuma, M., Oyoshi, K., and Takeda, Y.: Spectral investigation of nonlinear local field effects in Ag nanoparticles. J. Appl. Phys. 117, 113101 (2015).Google Scholar
21.Sato, R., Ishii, S., Nagao, T., Naito, M., and Takeda, Y.: Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures. ACS Photonics 5, 3452 (2018).Google Scholar
22.Enkelmann, V.: Structural aspects of the topochemical polymerization of diacetylene. Adv. Polym. Sci. 63, 91 (1984).Google Scholar
23.Agrawal, G.P., Cojan, C., and Flytzanis, C.: Nonlinear optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B 17, 776 (1978).Google Scholar
24.Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y., and Arakawa, Y.: Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279283 (2010).Google Scholar
25.Flory, F., Escoubas, L., and Berginc, G.: Optical properties of nanostructured materials. J. Nanophotonics 5, 052502 (2011).Google Scholar
26.Ganeev, R.A., and Usmanov, T.: Nonlinear-optical parameters of various media. Quantum Electron. 37, 605 (2007).Google Scholar
27.Astill, A.G.: Material figures of merit for non-linear optics. Thin Solid Films 204, 1 (1991).Google Scholar
28.Bruggeman, D.A.G.: Calculation of various physics constants in heterogeneous substrates. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636 (1935).Google Scholar
29.Aspnes, D.E.: Optical-properties of thin-films. Thin Solid Films 89, 249 (1982).Google Scholar
30.Murata, H., Takada, N., Tsutsui, T., Saito, S., Kurihara, T., and Kaino, T.: Spectra of χ(3)(−3ω;ω,ω,ω) in poly(2,5-thienylenevinylene) thin films with controlled conjugation lengths. J. Appl. Phys. 70, 2915 (1991).Google Scholar
31.Schrof, W., Rozouvan, S., Hartmann, T., Möhwald, H., Belov, V., and Van Keuren, E.: Nonlinear optical properties of novel low-bandgap polythiophenes. J. Opt. Soc. Am. B 15, 889 (1998).Google Scholar
32.Gu, B., Zhao, C., Baev, A., Yong, K.-T., Wen, S., and Prasad, P.N.: Molecular nonlinear optics: recent advances and applications. Adv. Opt. Photonics 8, 328 (2016).Google Scholar
Supplementary material: File

Maki et al. supplementary material

Figures S1-S5

Download Maki et al. supplementary material(File)
File 1.9 MB