Skip to main content Accessibility help
×
Home

Morphological effects on the third-order nonlinear optical response of polydiacetylene nanofibers

Published online by Cambridge University Press:  05 August 2019

Haruki Maki
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Rie Chiba
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Tsunenobu Onodera
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Hitoshi Kasai
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Rodrigo Sato
Affiliation:
Hydrogen Materials Engineering Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba 305-0003, Japan
Yoshihiko Takeda
Affiliation:
Hydrogen Materials Engineering Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba 305-0003, Japan
Hidetoshi Oikawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8755, Japan
Corresponding
Get access

Abstract

The third-order nonlinear optical (NLO) susceptibility for morphologically controlled polydiacetylene (PDA) nanocrystals (NCs) and PDA nanofibers (NFs) have been determined for the first time by the experimental combination of transient pump-probe spectroscopy and spectroscopic ellipsometry. The figure of the merit of PDA NFs was much superior to PDA NCs and/or PDA bulk crystals, and the excitonic relaxation time was of order of sub-pico second. Namely, this is the first case to reveal the morphological effect on NLO response. PDA NFs having the long effective π-conjugation length are one of the most promising organic third-order NLO nanomaterials toward the photonic device application.

Type
Research Letters
Information
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Rinkevicius, Z., Li, X., Sandberg, J.A.R., and Agren, H.: Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory. Phys. Chem. Chem. Phys. 16, 8981 (2014).CrossRefGoogle ScholarPubMed
2.Aljada, M., Alameh, K.E., Lee, Y.-T., and Chung, I.I.-S.: High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors. Opt. Exp. 14, 6823 (2006).CrossRefGoogle ScholarPubMed
3.Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Gotzinger, S., and Sandoghdar, V.: A single-molecule optical transistor. Nature 460, 76 (2009).CrossRefGoogle ScholarPubMed
4.Luan, F., Gu, B., Gomes, A.S.L., Yong, K.T., Wen, S.C., and Prasad, P.N.: Lasing in nanocomposite random media. Nano Today 10, 168 (2015).CrossRefGoogle Scholar
5.Okamoto, R., O'Brien, J.L., Hofmann, H.F., Nagata, T., Sasaki, K., and Takeuchi, S.: An entanglement filter. Science 323, 483 (2009).CrossRefGoogle ScholarPubMed
6.Smith, S.D.: Laser, nonlinear optics and optical computers. Nature 316, 319 (1985).CrossRefGoogle Scholar
7.Oikawa, H., Onodera, T., Masuhara, A., Kasai, H., and Nakanishi, H.: New class materials of organic-inorganic hybridized nanocrystals/nanoparticles, and their assembled micro- and nano-structure toward photonics. Adv. Polym. Sci. 231, 147 (2010).CrossRefGoogle Scholar
8.Yarimaga, O., Jaworski, J., Yoon, B., and Kim, J.-M.: Polydiacetylenes: supramolecular smart material with a structural hierarchy for sensing, imaging and display applications. Chem. Commun. 48, 2469 (2012).CrossRefGoogle Scholar
9.Wegner, G.: Solid-state polymerization mechanisms. Pure Appl. Chem. 49, 443 (1997).CrossRefGoogle Scholar
10.Matsuda, H., Molyneux, S., Kar, A.K., Wherrett, B.S., Okada, S., and Nakanishi, H.: Third-order nonlinear optical properties of polydiacetylene crystal. J. Photopolym. Sci. Technol. 6, 261 (1993).CrossRefGoogle Scholar
11.Giorgetti, E., Margheri, G., Sottini, S., Chen, X., Cravino, A., Comoretto, D., Cuniberti, C., Dell'Erba, C., and Dellepiane, G.: Linear and nonlinear characterization of polyDCHD-HS films. Synth. Met. 115, 257 (2000).CrossRefGoogle Scholar
12.Oikawa, H.: Hybridized organic nanocrystyals for optically functional materials. Bull. Chem. Soc. Jpn. 84, 233 (2011).CrossRefGoogle Scholar
13.Oikawa, H., Kasai, H., and Nakanishi, H.: Fabrication of organic microcrystals and their optical properties. In Anisotropic Organic Materials—Approaches to Polar Order, ACS Symposium Series 798, edited by Glaser, R., and Kaszynski, P. (ACS, Washington, 2001), pp. 158168.CrossRefGoogle Scholar
14.Oikawa, H. and Nakanishi, H.: Reprecipitation method for organic nanocrystals. In Nano Science and Technology—Single Organic Nanoparticles, edited by Masuhara, H., Nakanishi, H. and Sasaki, K. (Springer, Berlin, 2003), pp. 1731.Google Scholar
15.Oikawa, H., Mitsui, T., Onodera, T., Kasai, H., Nakanishi, H., and Sekiguchi, T.: Crystal size dependence of fluorescence spectra from Perylene nanocrystals evaluated by scanning near-field optical microscopy. Jpn. J. Appl. Phys. 42, L111 (2003).CrossRefGoogle Scholar
16.Volkov, V.V., Asahi, T., Masuhara, H., Masuhara, A., Kasai, H., Oikawa, H., and Nakanishi, H.: Size-dependent optical properties of polydiacetylene nanocrystals. J. Phys. Chem. B 108, 7674 (2004).CrossRefGoogle Scholar
17.Iimori, Y., Onodera, T., Kasai, H., Mitsuishi, M., Miyashita, T., and Oikawa, H.: Fabrication of pseudo single crystalline thin films composed of polydiacetylene nanofibers and their optical properties. Opt. Mater. Exp. 7, 2218 (2017).CrossRefGoogle Scholar
18.Sato, R., Momida, H., Ohnuma, M., Sasase, M., Ohno, T., Kishimoto, N., and Takeda, Y.: Experimental dispersion of the third order optical susceptibility of Ag nanoparticles. J. Opt. Soc. Am. B 29, 2410 (2012).CrossRefGoogle Scholar
19.Sato, R., Ohnuma, M., Oyoshi, K., and Takeda, Y.: Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization. Phys. Rev. B 90, 125417 (2014).CrossRefGoogle Scholar
20.Sato, R., Ohnuma, M., Oyoshi, K., and Takeda, Y.: Spectral investigation of nonlinear local field effects in Ag nanoparticles. J. Appl. Phys. 117, 113101 (2015).CrossRefGoogle Scholar
21.Sato, R., Ishii, S., Nagao, T., Naito, M., and Takeda, Y.: Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures. ACS Photonics 5, 3452 (2018).CrossRefGoogle Scholar
22.Enkelmann, V.: Structural aspects of the topochemical polymerization of diacetylene. Adv. Polym. Sci. 63, 91 (1984).CrossRefGoogle Scholar
23.Agrawal, G.P., Cojan, C., and Flytzanis, C.: Nonlinear optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B 17, 776 (1978).CrossRefGoogle Scholar
24.Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y., and Arakawa, Y.: Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279283 (2010).CrossRefGoogle Scholar
25.Flory, F., Escoubas, L., and Berginc, G.: Optical properties of nanostructured materials. J. Nanophotonics 5, 052502 (2011).CrossRefGoogle Scholar
26.Ganeev, R.A., and Usmanov, T.: Nonlinear-optical parameters of various media. Quantum Electron. 37, 605 (2007).CrossRefGoogle Scholar
27.Astill, A.G.: Material figures of merit for non-linear optics. Thin Solid Films 204, 1 (1991).CrossRefGoogle Scholar
28.Bruggeman, D.A.G.: Calculation of various physics constants in heterogeneous substrates. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636 (1935).CrossRefGoogle Scholar
29.Aspnes, D.E.: Optical-properties of thin-films. Thin Solid Films 89, 249 (1982).CrossRefGoogle Scholar
30.Murata, H., Takada, N., Tsutsui, T., Saito, S., Kurihara, T., and Kaino, T.: Spectra of χ(3)(−3ω;ω,ω,ω) in poly(2,5-thienylenevinylene) thin films with controlled conjugation lengths. J. Appl. Phys. 70, 2915 (1991).CrossRefGoogle Scholar
31.Schrof, W., Rozouvan, S., Hartmann, T., Möhwald, H., Belov, V., and Van Keuren, E.: Nonlinear optical properties of novel low-bandgap polythiophenes. J. Opt. Soc. Am. B 15, 889 (1998).CrossRefGoogle Scholar
32.Gu, B., Zhao, C., Baev, A., Yong, K.-T., Wen, S., and Prasad, P.N.: Molecular nonlinear optics: recent advances and applications. Adv. Opt. Photonics 8, 328 (2016).CrossRefGoogle Scholar

Maki et al. supplementary material

Figures S1-S5

File 2 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 14
Total number of PDF views: 63 *
View data table for this chart

* Views captured on Cambridge Core between 05th August 2019 - 19th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-wd6lz Total loading time: 0.296 Render date: 2021-01-19T06:31:16.889Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Jan 19 2021 05:55:15 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Morphological effects on the third-order nonlinear optical response of polydiacetylene nanofibers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Morphological effects on the third-order nonlinear optical response of polydiacetylene nanofibers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Morphological effects on the third-order nonlinear optical response of polydiacetylene nanofibers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *