Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T22:56:26.110Z Has data issue: false hasContentIssue false

Magnesium–sulfur battery: its beginning and recent progress

Published online by Cambridge University Press:  25 September 2017

Zhirong Zhao-Karger
Affiliation:
Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, D-89081 Ulm, Germany
Maximilian Fichtner*
Affiliation:
Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, D-89081 Ulm, Germany Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
*
Address all correspondence to M. Fichtner at m.fichtner@kit.edu
Get access

Abstract

Rechargeable magnesium (Mg) battery has been considered as a promising candidate for future battery generations because of its potential high-energy density, its safety features and low cost. The challenges lying ahead for the realization of Mg battery in general are to develop proper electrolytes fulfilling a multitude of requirements and to discover cathode materials enabling high-energy Mg batteries. The combination of Mg anode with a sulfur cathode is one of the promising electrochemical couples due to its advantages of safety, low costs, and a high theoretical energy density of over 3200 Wh/L. However, the research on magnesium–sulfur (Mg–S) battery is just at its beginning and the development of suitable electrolytes has been the key challenge for further improvement, and, thus, in the focus of recent research. In this review, we highlight the recent progress achieved in Mg electrolytes and Mg–S batteries and discuss the major technical issues, which must be resolved for the improvement of Mg–S batteries.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Manthiram, A.: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176 (2011).Google Scholar
2. Choi, N.S., Chen, Z., Freunberger, S.A., Sun, Y.K., Amine, K., Yushin, G., Nazar, L.F., Cho, J., and Bruce, P.G.: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994 (2012).Google Scholar
3. Yoo, H.D., Markevich, E., Salitra, G., Sharon, D., and Aurbach, D.: On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today 17, 110 (2014).Google Scholar
4. Hamilton, C.: Cobalt set to shine in metals markets in 2017. https://www.ft.com/content/e8ce859a-ff59-11e6-8d8e-a5e3738f9ae4.Google Scholar
5. Gregory, T.D., Hoffman, R.J., and Winterton, R.C.: Applications to energy storage nonaqueous electrochemistry of magnesium. J. Electrochem. Soc. 137, 775 (1990).Google Scholar
6. Aurbach, D., Cohen, Y., and Meshkovich, M.: The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Solid State Lett. 4, A113 (2001).Google Scholar
7. Jäckle, M. and Groß, A.: Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).Google Scholar
8. Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., and Aurbach, D.: Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013).CrossRefGoogle Scholar
9. Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., and Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1 (2014).CrossRefGoogle Scholar
10. Mohtadi, R. and Mizuno, F.: Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291 (2014).CrossRefGoogle ScholarPubMed
11. Huie, M.M., Bock, D.C., Takeuchi, E.S., Marschilok, A.C., and Takeuchi, K.J.: Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15 (2015).Google Scholar
12. Muldoon, J., Bucur, C.B., and Gregory, T.: Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683 (2014).CrossRefGoogle ScholarPubMed
13. Bucur, C.B., Gregory, T., Oliver, A.G., and Muldoon, J.: Confession of a magnesium battery. J. Phys. Chem. Lett. 6, 3578 (2015).Google Scholar
14. Song, J., Sahadeo, E., Noked, M., and Lee, S.B.: Mapping the challenges of magnesium battery. J. Phys. Chem. Lett. 7, 1736 (2016).Google Scholar
15. Canepa, P., Sai Gautam, G., Hannah, D.C., Malik, R., Liu, M., Gallagher, K.G., Persson, K.A., and Ceder, G.: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287 (2017).Google Scholar
16. Manthiram, A., Fu, Y., Chung, S., Zu, C., and Su, Y.: Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751 (2014).Google Scholar
17. Seh, Z.W., Sun, Y., Zhang, Q., and Cui, Y.: Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605 (2016).CrossRefGoogle ScholarPubMed
18. Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., Allred, G.D., Zajicek, J., and Kotani, Y.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941 (2012).CrossRefGoogle Scholar
19. Tutusaus, O. and Mohtadi, R.: Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. ChemElectroChem 2, 51 (2015).Google Scholar
20. Erickson, E.M., Markevich, E., Salitra, G., Sharon, D., Hirshberg, D., de la Llave, E., Shterenberg, I., Rozenman, A., and Frimer, A.: Review-development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc. 162, A2424 (2015).Google Scholar
21. Lu, Z., Schechter, A., Moshkovich, M., and Aurbach, D.: On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203 (1999).Google Scholar
22. Aurbach, D., Suresh, G.S., Levi, E., Mitelman, A., Mizrahi, O., Chusid, O., and Brunelli, M.: Progress in rechargeable magnesium battery technology. Adv. Mater. 19, 4260 (2007).Google Scholar
23. Vestfried, Y., Chusid, O., Goffer, Y., Aped, P., and Aurbach, D.: Structural analysis of electrolyte solutions comprising magnesium-aluminate chloro-organic complexes by Raman spectroscopy. Organometallics 26, 3130 (2007).Google Scholar
24. Pour, N., Gofer, Y., Major, D.T., and Aurbach, D.: Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 133, 6270 (2011).CrossRefGoogle ScholarPubMed
25. Guo, Y., Zhang, F., Yang, J., Wang, F., Li, Y.N., and Hirano, S.: Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ. Sci. 5, 9100 (2012).Google Scholar
26. Nelson, E.G., Brody, S.I., Kampf, J.W., and Bartlett, B.M.: A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J. Mater. Chem. A 2, 18194 (2014).CrossRefGoogle Scholar
27. Liebenow, C., Yang, Z., and Lobitz, P.: The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates. Electrochem. Commun. 2, 641 (2000).CrossRefGoogle Scholar
28. Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., Oliver, A.G., Boggess, W.C., and Muldoon, J.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).Google Scholar
29. Zhao-Karger, Z., Zhao, X., Fuhr, O., and Fichtner, M.: Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Adv. 3, 16330 (2013).Google Scholar
30. Seidel, W.: Synthese von mesitylaluminium-verbindungen. Z. anorg. Allg. Chem. 524, 101 (1985).CrossRefGoogle Scholar
31. Minella, C.B., Gao, P., Zhao-Karger, Z., Mu, X., Diemant, T., Pfeifer, M., Chakravadhanula, V.S.K., Behm, R.J., and Fichtner, M.: Interlayer-expanded vanadium oxychloride as an electrode material for magnesium-based batteries. ChemElectroChem 4, 738 (2017).CrossRefGoogle Scholar
32. Zhao-Karger, Z., Zhao, X., Wang, D., Diemant, T., Behm, R.J., and Fichtner, M.: Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5, 1 (2015).Google Scholar
33. Gao, T., Noked, M., Pearse, A.J., Gillette, E., Fan, X., Zhu, Y., Luo, C., Suo, L., and Schroeder, M.A.: Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137, 12388 (2015).Google Scholar
34. Vinayan, B.P., Zhao-Karger, Z., Diemant, T., Chakravadhanula, V.S.K., Schwarzburger, N.I., Cambaz, M.A., Behm, R.J., Kübel, C., and Fichtner, M.: Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale 8, 3296 (2016).CrossRefGoogle Scholar
35. Yu, X. and Manthiram, A.: Performance enhancement and mechanistic studies of magnesium-sulfur cells with an advanced cathode structure. ACS Energy Lett. 1, 431 (2016).Google Scholar
36. Zhao-Karger, Z., Lin, X.M., Bonatto Minella, C., Wang, D., Diemant, T., Behm, R.J., and Fichtner, M.: Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries. J. Power Sources 323, 213 (2016).Google Scholar
37. Tian, H., Gao, T., Li, X., Wang, X., Luo, C., Fan, X., Yang, C., Suo, L., and Ma, Z.: High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017).Google Scholar
38. Wang, F., Guo, Y., Yang, J., Nuli, Y., and Hirano, S.: A novel electrolyte system without a Grignard reagent for rechargeable magnesium batteries. Chem. Commun. 48, 10763 (2012).Google Scholar
39. Nelson, E.G., Kampf, J.W., and Bartlett, B.M.: Enhanced oxidative stability of non-Grignard magnesium electrolytes through ligand modification. Chem. Commun. 50, 5193 (2014).Google Scholar
40. Crowe, A.J. and Bartlett, B.M.: Influence of steric bulk on the oxidative stability of phenolate-based magnesium-ion battery electrolytes. J. Mater. Chem. A 4, 368 (2016).Google Scholar
41. Crowe, A.J., Stringham, K.K., and Bartlett, B.M.: Fluorinated alkoxide-based magnesium-ion battery electrolytes that demonstrate Li-ion-battery-like high anodic stability and solution conductivity. ACS Appl. Mater. Interfaces 8, 23060 (2016).CrossRefGoogle ScholarPubMed
42. Herb, J.T., Nist-Lund, C., Schwartz, J., and Arnold, C.B.: Structural effects of magnesium dialkoxides as precursors for magnesium-ion electrolytes. ECS Electrochem. Lett. 4, A49 (2015).Google Scholar
43. Herb, J.T., Nist-Lund, C.A., and Arnold, C.B.: A fluorinated dialkoxide-based magnesium-ion electrolyte. J. Mater. Chem. A 17, 7801 (2017).Google Scholar
44. He, S., Nielson, K.V., Luo, J., and Liu, T.L.: Recent advances on MgCl2 based electrolytes for rechargeable Mg batteries. Energy Storage Mater. 8, 184 (2016).Google Scholar
45. Rappoport, Z. and Marek, I., The Chemistry of Organomagnesium Compounds (John Wiley & Sons Ltd, Chichester, West Sussex, 2008).CrossRefGoogle Scholar
46. Viestfrid, Y., Levi, M.D., Gofer, Y., and Aurbach, D.: Microelectrode studies of reversible Mg deposition in THF solutions containing complexes of alkylaluminum chlorides and dialkylmagnesium. J. Electroanal. Chem. 576, 183 (2005).Google Scholar
47. Doe, R.E., Han, R., Hwang, J., Gmitter, A.J., Shterenberg, I., Yoo, H.D., Pour, N., and Aurbach, D.: Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243 (2014).Google Scholar
48. Barile, C.J., Barile, E.C., Zavadil, K.R., Nuzzo, R.G., and Gewirth, A.A.: Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition. J. Phys. Chem. C 118, 27623 (2014).Google Scholar
49. Barile, C.J., Nuzzo, R.G., and Gewirth, A.A.: Exploring salt and solvent effects in chloride-based electrolytes for magnesium electrodeposition and dissolution. J. Phys. Chem. C 119, 13524 (2015).CrossRefGoogle Scholar
50. See, K.A., Chapman, K.W., Zhu, L., Wiaderek, K.M., Borkiewicz, O.J., Barile, C.J., Chupas, P.J., and Gewirth, A.A.: The interplay of Al and Mg speciation in advanced Mg battery electrolyte solutions. J. Am. Chem. Soc. 138, 328 (2016).Google Scholar
51. Shterenberg, I., Salama, M., Gofer, Y., Levi, E., and Aurbach, D.: The challenge of developing rechargeable magnesium batteries. MRS Bull. 39, 453 (2014).Google Scholar
52. He, S., Luo, J., and Liu, T.L.: MgCl2/AlCl3 electrolytes for reversible Mg deposition/stripping: electrochemical conditioning or not? J. Mater. Chem. A 5, 12718 (2017).Google Scholar
53. Li, W., Cheng, S., Wang, J., Qiu, Y., Zheng, Z., Lin, H., Nanda, S., Ma, Q., and Xu, Y.: Synthesis, crystal structure, and electrochemical properties of a simple magnesium electrolyte for magnesium/sulfur batteries. Angew. Chem. Int. Ed. 55, 6406 (2016).Google Scholar
54. Luo, J., He, S., and Liu, T.L.: Tertiary Mg/MgCl2/AlCl3 inorganic Mg2+ electrolytes with unprecedented electrochemical performance for reversible Mg deposition. ACS Energy Lett. 2, 1197 (2017).Google Scholar
55. Lin, M.-C., Gong, M., Lu, B., Wu, Y., Wang, D.-Y., Guan, M., Angell, M., Chen, C., and Dai, H.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015).Google Scholar
56. Liu, T., Shao, Y., Li, G., Gu, M., Hu, J., Xu, S., Nie, Z., Chen, X., and Wang, C.: A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2, 3430 (2014).Google Scholar
57. Zhao-Karger, Z., Mueller, J.E., Zhao, X., Fuhr, O., Jacob, T., and Fichtner, M.: Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Adv. 4, 26924 (2014).Google Scholar
58. Robert, E.D., George, H.L., Robert, E.J., and Jaehee, H.: High voltage rechargeable magnesium batteries having a non-aqueous electrolyte. US Pat. Appl. Publ. US 2013/0252112 A1 (2014).Google Scholar
59. Shterenberga, I., Salamaa, M., Yoob, H.D., Gofera, Y., Parkc, J.-B., Sunc, Y.-K., and Aurbach, D.: Evaluation of (CF3SO2)2N (TFSI) based electrolyte solutions for Mg batteries. J. Electrochem. Soc. 162, A7118 (2015).CrossRefGoogle Scholar
60. Sa, N., Pan, B., Saha-Shah, A., Hubaud, A.A., Vaughey, J.T., Baker, L.A., Liao, C., and Burrell, A.K.: Role of chloride for a simple, non-grignard Mg electrolyte in ether-based solvents. ACS Appl. Mater. Interfaces 8, 16002 (2016).Google Scholar
61. Liao, C., Sa, N., Key, B., Burrell, A.K., Cheng, L., Curtiss, L.A., Vaughey, J.T., Woo, J.-J., and Hu, L.: The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A 3, 6082 (2015).Google Scholar
62. Pan, B., Huang, J., He, M., Brombosz, S.M., Vaughey, J.T., Zhang, L., Burrell, A.K., Zhang, Z., and Liao, C.: The role of MgCl2 as a Lewis base in ROMgCl-MgCl2 electrolytes for magnesium-ion batteries. ChemSusChem 9, 595 (2016).Google Scholar
63. Kang, S.J., Lim, S.C., Kim, H., Heo, J.W., Hwang, S., Jang, M., Yang, D., Hong, S.T., and Lee, H.: Non-grignard and Lewis acid-free sulfone electrolytes for rechargeable magnesium batteries. Chem. Mater. 29, 3174 (2017).Google Scholar
64. Yagi, S., Tanaka, A., Ichikawa, Y., Ichitsubo, T., and Matsubara, E.: Electrochemical stability of magnesium battery current collectors in a Grignard reagent-based electrolyte. J. Electrochem. Soc. 160, C83 (2013).CrossRefGoogle Scholar
65. Wall, C., Zhao-Karger, Z., and Fichtner, M.: Corrosion resistance of current collector materials in Bisamide based electrolyte for magnesium batteries. ECS Electrochem. Lett. 4, C8 (2014).Google Scholar
66. Mohtadi, R., Matsui, M., Arthur, T.S., and Hwang, S.J.: Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. 51, 9780 (2012).Google Scholar
67. Kar, M., Ma, Z., Azofra, L.M., Chen, K., Forsyth, M., and MacFarlane, D.R.: Ionic liquid electrolytes for reversible magnesium electrochemistry. Chem. Commun. 52, 4033 (2016).CrossRefGoogle ScholarPubMed
68. Watkins, T., Kumar, A., and Buttry, D.A.: Designer ionic liquids for reversible electrochemical deposition/dissolution of magnesium. J. Am. Chem. Soc. 138, 641 (2016).Google Scholar
69. Muldoon, J., Bucur, C.B., Oliver, A.G., Zajicek, J., Allred, G.D., and Boggess, W.C.: Corrosion of magnesium electrolytes: chlorides-the culprit. Energy Environ. Sci. 6, 482 (2013).Google Scholar
70. Ha, S.Y., Lee, Y.W., Woo, S.W., Koo, B., Kim, J.S., Cho, J., Lee, K.T., and Choi, N.S.: Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 6, 4063 (2014).CrossRefGoogle ScholarPubMed
71. Ma, Z., Kar, M., Xiao, C., Forsyth, M., and MacFarlane, D.R.: Electrochemical cycling of Mg in Mg[TFSI]2/tetraglyme electrolytes. Electrochem. Commun. 78, 29 (2017).Google Scholar
72. Tutusaus, O., Mohtadi, R., Arthur, T.S., Mizuno, F., Nelson, E.G., and Sevryugina, Y.V.: An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. 54, 7900 (2015).Google Scholar
73. Tutusaus, O., Mohtadi, R., Singh, N., Arthur, T.S., and Mizuno, F.: Study of electrochemical phenomena observed at the Mg metal/electrolyte interface. ACS Energy Lett. 2, 224 (2016).Google Scholar
74. McArthur, S.G., Geng, L., Guo, J., and Lavallo, V.: Cation reduction and comproportionation as novel strategies to produce high voltage, halide free, carborane based electrolytes for rechargeable Mg batteries. Inorg. Chem. Front. 2, 1101 (2015).Google Scholar
75. McArthur, S., Jay, R., Geng, L., Guo, J., and Lavallo, V.: Below the 12-vertex: 10-vertex carborane anions as non-corrosive, halide free, electrolytes for rechargeable Mg batteries. Chem. Commun. 53, 4453 (2017).Google Scholar
76. Keyzer, E.N., Glass, H.F.J., Liu, Z., Bayley, P.M., Dutton, S.E., Grey, C.P., and Wright, D.S.: Mg(PF6)2-based electrolyte systems: understanding electrolyte-electrode interactions for the development of Mg-ion batteries. J. Am. Chem. Soc. 138, 8682 (2016).Google Scholar
77. Schwarz, R., Pejic, M., Fischer, P., Marinaro, M., Jörissen, L., and Wachtler, M.: Magnesocene-based electrolytes: a new class of electrolytes for magnesium batteries. Angew. Chem. Int. Ed. 55, 14958 (2016).Google Scholar
78. Herb, J.T., Nist-Lund, C.A., and Arnold, C.B.: A fluorinated alkoxyaluminate electrolyte for magnesium-ion batteries. ACS Energy Lett. 1, 1227 (2016).Google Scholar
79. Zhang, Z., Cui, Z., Qiao, L., Guan, J., Xu, H., Wang, X., Hu, P., Du, H., and Li, S.: Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium–selenium and magnesium-sulfur batteries. Adv. Energy Mater. 7, 1602055 (2017).Google Scholar
80. Krossing, I. and Raabe, I.: Noncoordinating anions-fact or fiction? A survey of likely candidates. Angew. Chem. Int. Ed. 43, 2066 (2004).Google Scholar
81. Zhao-Karger, Z., Bardaji, E.G., Fuhr, O., and Fichtner, M.: New class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 5, 10815 (2017).Google Scholar
82. Lalancette, J.M., Freche, A., Brindle, J.R., and Laliberte, M.: Reductions of functional groups with sulfurated borohydrides. Application to steroidal ketones. Synthesis 10, 526 (1972).Google Scholar
83. Itaoka, K., Kim, I.T., Yamabuki, K., Yoshimoto, N., and Tsutsumi, H.: Room temperature rechargeable magnesium batteries with sulfur-containing composite cathodes prepared from elemental sulfur and bis(alkenyl) compound having a cyclic or linear ether unit. J. Power Sources 297, 323 (2015).Google Scholar