Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-vpjr5 Total loading time: 0.321 Render date: 2021-04-20T16:11:13.162Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Improving ambient stability of BiI3-based perovskites using different phosphoniums as the organic cation

Published online by Cambridge University Press:  30 April 2018

Diana F. Garcia-Gutierrez
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, Fac. de Ingeniería Mecánica y Eléctrica, FIME, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, División de Estudios de Posgrado FCQ, Guerrero y Progreso S/N, Col. Treviño, Monterrey, Nuevo León, C.P. 64570, México
Domingo I. Garcia-Gutierrez
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ingeniería Mecánica y Eléctrica, FIME, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México
Diego González-Quijano
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, División de Estudios de Posgrado FCQ, Guerrero y Progreso S/N, Col. Treviño, Monterrey, Nuevo León, C.P. 64570, México
Itzel A. Abarca-Villarreal
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México
Sofia F. Galindo-Garza
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México
Eduardo M. Sanchez
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, División de Estudios de Posgrado FCQ, Guerrero y Progreso S/N, Col. Treviño, Monterrey, Nuevo León, C.P. 64570, México
Corresponding
Get access

Abstract

Perovskites solar cells have reached impressive efficiencies (22%) in recent years. Because certain environmental concerns are raised by the use of lead halides, there is an interest to seek out lead-free alternatives, featuring bismuth or antimony. Alongside, one of the major drawbacks displayed by MAPbI3 is their low stability at ambient conditions. In this work, (RP4)xBiyIz were synthesized, using different types of tetra-alkylphosphoniums (R4PI) were R = ethyl, butyl, hexyl, and octyl, to assess their stability. Afterwards, they were characterized to study their morphology and crystal structure, as well as their optical properties.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

2.Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., and Mosca, R.: MAPbI3––x Cl x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013).CrossRefGoogle Scholar
3.Hodes, G.: Perovskite-based solar cells. Science 342, 317 (2013).CrossRefGoogle ScholarPubMed
4.Snaith, H.J.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 36233630 (2013).CrossRefGoogle Scholar
5.Song, T., Chen, Q., Zhou, H.H.-P., Jiang, C., Wang, H.-H., Yang, Y. (Michael), Liu, Y., You, J., Yang, Y., Liu, Y., You, J., Yang, Y. (Michael), Liu, Y., You, J., and Yang, Y.: Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032 (2015).CrossRefGoogle Scholar
6.Zhang, X., Ren, X., Liu, B., Munir, R., Zhu, X., Yang, D., Li, J., Liu, Y., Smilgies, D., Li, R., Yang, Z., Niu, T., Wang, X., Amassian, A., Zhao, K., and Liu, S.F.: Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10, 2095 (2017).CrossRefGoogle Scholar
7.Tan, H., Jain, A., Voznyy, O., Lan, X., García de Arquer, F.P., Fan, J.Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L.N., Zhao, Y., Lu, Z.-H., Yang, Z., Hoogland, S., and Sargent, E.H.: Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017).CrossRefGoogle ScholarPubMed
8.Wang, Z., Lin, Q., Chmiel, F.P., Sakai, N., Herz, L.M., and Snaith, H.J.: Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 6, 17135 (2017).CrossRefGoogle Scholar
9.Mitzi, D.B.: Organic–inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorg. Chem. 39, 6107 (2000).CrossRefGoogle ScholarPubMed
10.Mitzi, D.B. and Brock, P.: Structure and optical properties of several organic–inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. Inorg. Chem. 40, 2096 (2001).CrossRefGoogle ScholarPubMed
11.Hamdeh, U.H., Nelson, R.D., Ryan, B.J., Bhattacharjee, U., Petrich, J.W., and Panthani, M.G.: Solution-processed BiI3 thin films for photovoltaic applications: improved carrier collection via solvent annealing. Chem. Mater. 28, 6567 (2016).CrossRefGoogle Scholar
12.Ramírez, R.E. and Sánchez, E.M.: Molten phosphonium iodides as electrolytes in dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 90, 2384 (2006).CrossRefGoogle Scholar
13.Del Sesto, R.E., Corley, C., Robertson, A., and Wilkes, J.S.: Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem. 690, 2536 (2005).CrossRefGoogle Scholar
14.Ramírez, R.E., Torres-González, L.C., and Sánchez, E.M.: Electrochemical aspects of asymmetric phosphonium ionic liquids. J. Electrochem. Soc. 154, B229 (2007).CrossRefGoogle Scholar
15.Fraser, K.J. and MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62, 309 (2009).CrossRefGoogle Scholar
16.Ramírez-Garcia, R.E. and Sánchez-Cervantes, E.M.: Desarrollo de nuevos electrolitos con potencial uso en celdas solares nanocristalinas. Cien. UANL X, 400 (2007).Google Scholar
17.Ramírez, R.E., Torres-González, L.C., Hernández, A., García, A., and Sánchez, E.M.: Conductivity and viscosity behavior of asymmetric phosphonium iodides. J. Phys. Chem. B 114, 4271 (2010).CrossRefGoogle ScholarPubMed
18.Banerjee, A., Theron, R., and Scott, R.W.J.: Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis. ChemSusChem 5, 109 (2012).CrossRefGoogle ScholarPubMed
19.Mostafa, M.F., Atallah, A.S., and Elessawi, M.: Preparation and characterization of a new series of perovskite-like structures showing evidence of structural transitions: (methyltriphenylphosphonium)2BX4, B = Mn, Co, Cu, and Hg, and X = CI/I. Phase Transit. 64, 215 (1998).CrossRefGoogle Scholar
20.Mostafa, M.F. and Atallah, A.S.: Permittivity and ac conductivity study of the layered perovskite [(CH3) (C6H5)3P]2MnCl4 showing evidence of phase transition. Phys. Lett. A 264, 242 (1999).CrossRefGoogle Scholar
21.Schluter, M., Cohen, M.L., Kohn, S.E., and Fong, C.Y.: Electronic structure of BiI3. Phys. Status Solidi B 78, 737 (1976).CrossRefGoogle Scholar
22.Coates, J.: Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 12, 10815 (2000).Google Scholar
24.Skoog, D.A., James Holler, F., and Nieman, T. A.: Principios de análisis instrumental, 5ta Edición (McGraw Hill, Madrid, 2001), p. 409.Google Scholar
25.Clegg, W., Errington, R.J., Fisher, G.A., Green, M.E., Hockless, D.C.R., and Norman, N.C.: A phosphine complex of bismuth(III): X-ray crystal structure of [PMe3H] [Bi2Br7(PMe3)2]. Chem. Ber. 124, 2457 (1991).CrossRefGoogle Scholar
26.Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A.: EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231 (2013).CrossRefGoogle Scholar
27.Winn, D. and Doherty, M.F.: Modeling crystal shapes of organic materials grown from solution. AlChE J. 46, 1348 (2000).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 52
Total number of PDF views: 101 *
View data table for this chart

* Views captured on Cambridge Core between 30th April 2018 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Improving ambient stability of BiI3-based perovskites using different phosphoniums as the organic cation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Improving ambient stability of BiI3-based perovskites using different phosphoniums as the organic cation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Improving ambient stability of BiI3-based perovskites using different phosphoniums as the organic cation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *