Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-gtjl9 Total loading time: 0.237 Render date: 2021-04-20T21:21:40.679Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Fabrication of optically active fiber mats via melt electrospinning

Published online by Cambridge University Press:  13 August 2018

John P. Murphy
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Montana University System Materials Science Ph.D. Program, 1300 W. Park St., Butte, MT 59701, USA
Molly C. Brockway
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Montana University System Materials Science Ph.D. Program, 1300 W. Park St., Butte, MT 59701, USA
Jessica M. Andriolo
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Mechanical Engineering Department, Montana Tech, 1300 W. Park St., Butte, MT 59701, USA
Nathan J. Sutton
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Mechanical Engineering Department, Montana Tech, 1300 W. Park St., Butte, MT 59701, USA
Jack L. Skinner
Affiliation:
Montana Tech Nanotechnology Laboratory, 1300 W. Park St., Butte, MT 59701, USA Montana University System Materials Science Ph.D. Program, 1300 W. Park St., Butte, MT 59701, USA Mechanical Engineering Department, Montana Tech, 1300 W. Park St., Butte, MT 59701, USA
Corresponding
E-mail address:
Get access

Abstract

Melt electrospinning is a facile fabrication technique that can be utilized in the creation of microfibers without the use of solvent and with good control over feature placement. The available thermal energy of the melt electrospinning technique is often only utilized in the formation of the polymer melt but can also be used to thermodynamically drive chemical reactions. In this study, hybrid perovskite microcrystallites are synthesized in the polymer melt and electrospun to form composite microfibers. Unique hybrid perovskite microstructures were studied, elucidating mechanisms of formation at work in the polymer melt.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Larrondo, L. and St. John Manley, R.: Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci. Polym. Phys. Ed. 19, 909 (1981). doi: 10.1002/pol.1981.180190601.CrossRefGoogle Scholar
2.Lyons, J., Li, C., and Ko, F.: Melt-electrospinning part I: processing parameters and geometric properties. Polymer 45, 7597 (2004). doi: 10.1016/j.polymer.2004.08.071CrossRefGoogle Scholar
3.Brown, T.D., Dalton, P.D., and Hutmacher, D.W.: Direct writing by way of melt electrospinning. Adv. Mater. 23, 5651 (2011). doi: 10.1002/adma.201103482CrossRefGoogle ScholarPubMed
4.Wunner, F.M., Willie, M.L., Noonan, T.G., Bas, O., Dalton, P.D., De-Juan-Pardo, E.M., and Hutmacher, D.W.: Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mater. 30, 1706570 (2018). doi: 10.1002/adma.201706570.CrossRefGoogle ScholarPubMed
5.Zhang, S., Lanty, G., Lauret, J.S., Deleporte, E., Audebert, P., and Galmiche, L.: Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors. Acta Mater. 57, 3301 (2009). doi: 10.1016/j.actamat.2009.03.037.CrossRefGoogle Scholar
6.Quarti, C., Mosconi, E., Ball, J.M., D'Innocenzo, V., Tao, C., Pathak, S., Snaith, H.J., Petrozza, A., and De Angelis, F.: Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155 (2016). doi: 10.1039/C5EE02925BCrossRefGoogle Scholar
7.Ziang, X., Shifeng, L., Laixiang, Q., Shuping, P., Wei, W., Yu, Y., Li, Y., Zhijian, C., Shufeng, W., Honglin, D., Minghui, Y., and Qin, G.G.: Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt. Mater. Express 5, 29 (2015). doi: 10.1364/OME.5.000029CrossRefGoogle Scholar
8.Tan, Z.-K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Prince, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bien, T., Snaith, H.J., and Friend, R.H.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014). doi: 10.1038/nnano.2014.149.CrossRefGoogle ScholarPubMed
9.Bai, S., Yuan, Z., and Gao, F.: Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. J. Mater. Chem. C 4, 3898 (2016). doi: 10.1039/C5TC04116C.CrossRefGoogle Scholar
10.Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., and Il Seok, S.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764 (2013). doi: 10.1021/nl400349b.CrossRefGoogle ScholarPubMed
11.Niu, G., Guo, X., and Wang, L.: Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970 (2015). doi: 10.1039/C4TA04994B.CrossRefGoogle Scholar
12.Manser, J.S., Saidaminov, M.I., Christians, J.A., Bakr, O.M., and Kamat, P.V.: Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330 (2016). doi: 10.1021/acs.accounts.5b00455.CrossRefGoogle ScholarPubMed
13.Yang, J., Siempelkamp, B.D., Liu, D., and Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015). doi: 10.1021/nn506864k.CrossRefGoogle ScholarPubMed
14.Murphy, J.P., Andriolo, J.M., Ross, B.M., Wyss, G.F., Zander, N.E., and Skinner, J.L.: Organometallic Halide perovskite synthesis in polymer melt for improved stability in high humidity. MRS Adv. 1, 3207 (2016). doi: 10.1557/adv.2016.379.CrossRefGoogle Scholar
15.Murphy, J.P., Ross, B.M., Andriolo, J.M., and Skinner, J.L.: Hybrid organic–inorganic perovskite composite fibers produced via melt electrospinning. J. Vac. Sci. Technol. B 34, 06KM01 (2016). doi: 10.1116/1.4966604.CrossRefGoogle Scholar
16.Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., and Yang, S.: All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245 (2013). doi: 10.1039/c3nr00218g.CrossRefGoogle ScholarPubMed
17.Dualeh, A., Gao, P., Il Seok, S., Nazeeruddin, M.K., and Grätzel, M.: Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 6160 (2014). doi: 10.1021/cm502468k.CrossRefGoogle Scholar
18.Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N.P., and Cui, G.: Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chemie Int. Ed 54, 9705 (2015). doi: 10.1002/anie.201504379.CrossRefGoogle ScholarPubMed
19.Murphy, J.P., Andriolo, J.M., Sutton, N.J., Brockway, M.C., and Skinner, J.L.: Coaxial hybrid perovskite fibers: synthesis and encapsulation in situ via electrospinning. J. Vac. Sci. Technol. B 35, 06G402 (2017). doi: 10.1116/1.4991724.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 16
Total number of PDF views: 68 *
View data table for this chart

* Views captured on Cambridge Core between 13th August 2018 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fabrication of optically active fiber mats via melt electrospinning
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fabrication of optically active fiber mats via melt electrospinning
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fabrication of optically active fiber mats via melt electrospinning
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *