Skip to main content Accessibility help

Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies

  • Andrew M. Ritzmann (a1), Ana B. Muñoz-García (a2), Michele Pavone (a2), John A. Keith (a3) and Emily A. Carter (a4)...


Solid oxide fuel cells (SOFCs) are attractive for clean and efficient electricity generation, but high operating temperatures (Top > 800 °C) limit their widespread usage. Oxygen ion conducting cathode materials (mixed ion-electron conductors, MIECs), such as La1−xSrxCo1−yFeyO3 (LSCF), enable lower Top by reducing cathode polarization losses. Understanding how composition affects oxygen diffusion in LaFeO3 is vitally important for designing high-performance LSCF cathodes. To do this, we employ first-principles density functional theory plus U (DFT+U) calculations to show how lanthanum vacancies in LaFeO3 dramatically change the oxygen diffusion coefficient. Our ab initio results show that A-site substoichiometry is a viable route to increased oxygen diffusion and higher SOFC performance.


Corresponding author

Address all correspondence to Emily A. Carter at


Hide All
1Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563588 (1993).
2Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 47914844 (2004).
3Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345352 (2001).
4Huang, K., Wan, J., and Goodenough, J.B.: Oxide-ion conducting ceramics for solid oxide fuel cells. J. Mater. Sci. 36, 10931098 (2001).
5Rembelski, D., Viricelle, J.P., Combemale, L., and Rieu, M.: Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12, 256264 (2012).
6Kuklja, M.M., Kotomin, E.A., Merkle, R., Mastrikov, Y.A., and Maier, J.: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 54435471 (2013).
7Lu, Z., Hardy, J., Templeton, J., and Stevenson, J.: Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell. J. Power Sources 198, 9094 (2012).
8Striker, T., Ruud, J., Gao, Y., Heward, W., and Steinbruchel, C.: A-site deficiency, phase purity and crystal structure in lanthanum strontium ferrite powders. Solid State Ionics 178, 13261336 (2007).
9Lee, Y.-L., Kleis, J., Rossmeisl, J., and Morgan, D.: Ab initio energetics of LaBO3 (001) (B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80, 224101 (2009).
10Pavone, M., Ritzmann, A.M., and Carter, E.A.: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Env. Sci. 4, 49334937 (2011).
11Jones, A. and Islam, M.S.: Atomic-scale insight into LaFeO3 Perovskite: defect nanoclusters and ion migration. J. Phys. Chem. C 112, 44554462 (2008).
12Ritzmann, A.M., Muñoz-García, A.B., Pavone, M., Keith, J.A., and Carter, E.A.: Ab initio DFT + U analysis of oxygen vacancy formation and migration in La1−xSrxFeO3−δ (x = 0, 0.25, 0.50). Chem. Mater., in press (2013) doi: 10.1021/cm401052w.
13Mastrikov, Y.A., Merkle, R., Kotomin, E.A., Kuklja, M.A., and Maier, J.: Formation and migration of oxygen vacancies in La1−xSrxCo1−yFeyO3−δ: insight from ab initio calculations and comparison with Ba1−xSrxCo1−yFeyO3−δ. Phys. Chem. Chem. Phys. 15, 911918 (2013).
14Mizusaki, J., Yoshihiro, M., Yamauchi, S., and Fueki, K.: Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−d. J. Solid State Chem. 58, 257266 (1985).
15Anisimov, V.I., Zaanen, J., and Andersen, O.K.: Band theory and Mott insulators – Hubbard-U instead of Stoner-I. Phys. Rev. B 44, 943954 (1991).
16Mosey, N.J., Liao, P., and Carter, E.A.: Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations. J. Chem. Phys 129, 014103 (2008).
17Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).
18Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996).
19Bader, R.F.W.: Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1994).
20Wolfram Research, Inc.; Mathematica Version 9.0 (Champaign, IL, 2013).
21Ishigaki, T., Yamauchi, S., Mizusaki, J., Fueki, K., Naito, H., and Adachi, T.: Diffusion of oxide ions in LaFeO3 single crystal. J. Solid State Chem. 55, 5053 (1984).
22Marino, K.A. and Carter, E.A.: First-principles characterization of Ni diffusion kinetics in β-NiAl. Phys. Rev. B 78, 184105 (2008).
23Muñoz-García, A.B., Pavone, M., Ritzmann, A.M., and Carter, E.A.: Oxide ion transport in Sr2Fe1.5Mo0.5O6−δ, a mixed ion-electron conductor: new insights from first principles modeling. Phys. Chem. Chem. Phys. 15, 62506259 (2013).
24Marezio, M. and Dernier, P.D.: The bond lengths in LaFeO3, MRS Bull. 6, 2329 (1971).
25Momma, K. and Izumi, F.: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653658 (2008).
Type Description Title
Supplementary materials

Ritzmann Supplementary Material
Supplementary Material

 Word (347 KB)
347 KB
Supplementary materials

Ritzmann Supplementary Material

 Unknown (39 KB)
39 KB
Supplementary materials

Ritzmann Supplementary Material

 Unknown (239 KB)
239 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed