Skip to main content Accessibility help

3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators

  • Nick A. Shepelin (a1), Vanessa C. Lussini (a2), Phillip J. Fox (a2), Greg W. Dicinoski (a2), Alexey M. Glushenkov (a3) (a4), Joseph G. Shapter (a5) and Amanda V. Ellis (a1)...


Flexible piezoelectric generators (PEGs) present a unique opportunity for renewable and sustainable energy harvesting. Here, we present a low-temperature and low-energy deposition method using solvent evaporation-assisted three-dimensional printing to deposit electroactive poly(vinylidene fluoride) (PVDF)-trifluoroethylene (TrFE) up to 19 structured layers. Visible-wavelength transmittance was above 92%, while ATR-FTIR spectroscopy showed little change in the electroactive phase fraction between layer depositions. Electroactivity from the fabricated PVDF-TrFE PEGs showed that a single structured layer gave the greatest output at 289.3 mV peak-to-peak voltage. This was proposed to be due to shear-induced polarization affording the alignment of the fluoropolymer dipoles without an electric field or high temperature.


Corresponding author

Address all correspondence to Amanda V. Ellis at


Hide All
1.Wang, Z.L., Zhu, G., Yang, Y., Wang, S.H., and Pan, C.F.: Progress in nanogenerators for portable electronics. Mater. Today 15, 532 (2012).
2.Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., and Vaish, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836 (2014).
3.Bowen, C.R., Kim, H.A., Weaver, P.M., and Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2014).
4.Li, J., Kang, L., Yu, Y.H., Long, Y., Jeffery, J.J., Cai, W.B., and Wang, X.D.: Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 51, 728 (2018).
5.Yu, Y.H., Sun, H.Y., Orbay, H., Chen, F., England, C.G., Cai, W.B., and Wang, X.D.: Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy 27, 275 (2016).
6.Ramadan, K.S., Sameoto, D., and Evoy, S.: A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 23, 033001 (2014).
7.Martins, P., Lopes, A.C., and Lanceros-Mendez, S.: Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683 (2014).
8.Li, M.Y., Katsouras, I., Piliego, C., Glasser, G., Lieberwirth, I., Blom, P.W.M., and de Leeuw, D.M.: Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J. Mater. Chem. C 1, 7695 (2013).
9.Bhavanasi, V., Kumar, V., Parida, K., Wang, J.X., and Lee, P.S.: Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl. Mater. Interfaces 8, 521 (2016).
10.Rajala, S., Schouten, M., Krijnen, G., and Tuukkanen, S.: High bending-mode sensitivity of printed piezoelectric poly(vinylidenefluoride-co-trifluoroethylene) sensors. ACS Omega 3, 8067 (2018).
11.Eberle, G., Schmidt, H., and Eisenmenger, W.: Piezoelectric polymer electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 624 (1996).
12.Soulestin, T., Ladmiral, V., Dos Santos, F.D., and Ameduri, B.: Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties? Prog. Polym. Sci. 72, 16 (2017).
13.Ito, Y. and Uchino, K.: Piezoelectricity. In Encyclopedia of RF and Microwave Engineering, edited by Chang, K. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005), p. 480.
14.Chen, X., Ware, H.O.T., Baker, E., Chu, W., Hu, J., and Sun, C.: The development of an all-polymer-based piezoelectric photocurable resin for additive manufacturing. Procedia CIRP 65, 157 (2017).
15.Fortunato, M., Chandraiahgari, R.C., De Bellis, G., Ballirano, P., Sarto, F., Tamburrano, A., and Sarto, S.M.: Piezoelectric effect and electroactive phase nucleation in self-standing films of unpoled PVDF nanocomposite films. Nanomaterials 8, 743 (2018).
16.Ghosh, S.K. and Mandal, D.: Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245 (2018).
17.Lee, C. and Tarbutton, J.A.: Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications. Smart Mater. Struct. 23, 095044 (2014).
18.Kim, H., Torres, F., Wu, Y., Villagran, D., Lin, Y., and Tseng, T.-L.: Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26, 085027 (2017).
19.Bodkhe, S., Turcot, G., Gosselin, F.P., and Therriault, D.: One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9, 20833 (2017).
20.Postiglione, G., Natale, G., Griffini, G., Levi, M., and Turri, S.: Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos. Part A: Appl. Sci. Manuf. 76, 110 (2015).
21.Bottino, A., Capannelli, G., Munari, S., and Turturro, A.: Solubility parameters of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Lett. 26, 785 (1988).
22.Yu, L. and Cebe, P.: Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer 50, 2133 (2009).
23.Murphy, S.V. and Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014).
24.Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., and Mülhaupt, R.: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212 (2017).
25.Cai, X.M., Lei, T.P., Sun, D.H., and Lin, L.W.: A critical analysis of the alpha, beta and gamma phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382 (2017).
26.Barrau, S., Ferri, A., Da Costa, A., Defebvin, J., Leroy, S., Desfeux, R., and Lefebvre, J.M.: Nanoscale investigations of alpha- and gamma-crystal phases in PVDF-based nanocomposites. ACS Appl. Mater. Interfaces 10, 13092 (2018).
27.Gregorio, R. and Cestari, M.: Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J. Polym. Sci., Part B: Polym. Lett. 32, 859 (1994).
28.Yang, J.H., Ryu, T., Lansac, Y., Jang, Y.H., and Lee, B.H.: Shear stress-induced enhancement of the piezoelectric properties of PVDF-TrFE thin films. Org. Electron. 28, 67 (2016).
29.Gebrekrstos, A., Sharma, M., Madras, G., and Bose, S.: Critical insights into the effect of shear, shear history, and the concentration of a diluent on the polymorphism in poly(vinylidene fluoride). Cryst. Growth Des. 17, 1957 (2017).
Type Description Title
Supplementary materials

Shepelin et al. supplementary material
Shepelin et al. supplementary material 1

 PDF (1.2 MB)
1.2 MB

3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators

  • Nick A. Shepelin (a1), Vanessa C. Lussini (a2), Phillip J. Fox (a2), Greg W. Dicinoski (a2), Alexey M. Glushenkov (a3) (a4), Joseph G. Shapter (a5) and Amanda V. Ellis (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed