Skip to main content Accessibility help

3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique

  • Hoejin Kim (a1), Luis Carlos Delfin Manriquez (a1), Md Tariqul Islam (a2), Luis A. Chavez (a1), Jaime E. Regis (a1), Md Ariful Ahsan (a2), Juan C. Noveron (a2), Tzu-Liang B. Tseng (a3) and Yirong Lin (a1)...


A simple and facile stereolithography 3D printing technique was utilized to fabricate piezoelectric photopolymer-based polyvinylidene fluoride (PVDF) blends. Different process variables, such as solvent (N,N-dimethylformamide, DMF) to PVDF ratio and PVDF solution to photopolymer resin (PR) ratio, were engineered to enhance the dispersion of the PVDF into the PR so as to achieve the maximum piezoelectric coupling coefficient. Our results demonstrate that a ratio of 1:10 (PVDF:DMF) and 2 wt%-PVDF/PR was optimal for the best dissolution of the PVDF, 3D printability, and piezoelectric properties. Under these conditions, the blend generated ±0.121 nA under 80 N dynamic loading excitation. We believe that the findings of this work would promote many further studies on the mass production of flexible piezoelectric polymer blends with higher quality finished surface and design flexibility.


Corresponding author

Address all correspondence to Hoejin Kim at


Hide All
1.Kawai, H.: The piezoelectricity of poly (vinylidene fluoride). Jpn J. Appl. Phys. 8, 975 (1969).
2.Lovinger, A.J.: Poly (Vinylidene Fluoride). Developments in Crystalline Polymers—1 (Applied Science Publisher, London, UK, 1982), pp. 195273.10.1007/978-94-009-7343-5_5
3.Fukada, E.: History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 12771290 (2000).10.1109/58.883516
4.Ye, Y., Jiang, Y., Wu, Z., and Zeng, H.: Phase transitions of poly (vinylidene fluoride) under electric fields. Integr. Ferroelectr. 80, 245251 (2006).10.1080/10584580600659423
5.Sajkiewicz, P., Wasiak, A., and Gocłowski, Z.: Phase transitions during stretching of poly (vinylidene fluoride). Eur. Polym. J. 35, 423429 (1999).
6.Salimi, A. and Yousefi, A.: Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22, 699704 (2003).
7.Kim, H., Torres, F., Villagran, D., Stewart, C., Lin, Y., and Tseng, T.-L.B.: 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications. Macromol. Mater. Eng. 302, 1700229 (2017).10.1002/mame.201700229
8.Granstrom, J., Feenstra, J., Sodano, H.A., and Farinholt, K.: Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 16, 1810 (2007).10.1088/0964-1726/16/5/036
9.Chiolerio, A., Lombardi, M., Guerriero, A., Canavese, G., Stassi, S., Gazia, R., et al. .: Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. J. Mater. Sci. 48, 69436951 (2013).
10.Kim, H., Fernando, T., Li, M., Lin, Y., and Tseng, T.-L.B.: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater 52(2), 197206 (2017). 10.1177/0021998317704709.
11.Kaura, T., Nath, R., and Perlman, M.: Simultaneous stretching and corona poling of PVDF films. J. Phys. D Appl. Phys. 24, 1848 (1991).10.1088/0022-3727/24/10/020
12.Sun, D., Chang, C., Li, S., and Lin, L.: Near-field electrospinning. Nano Lett. 6, 839842 (2006).
13.Kim, H., Torres, F., Islam, M.T., Islam, M.D., Chavez, L.A., Garcia Rosales, C.A., et al. : Increased piezoelectric response in functional nanocomposites through multiwall carbon nanotube interface and fused-deposition modeling three-dimensional printing. MRS Commun., 17 (2017).
14.Kim, H., Fernando, T., Li, M., Lin, Y., and Tseng, T.-L.B.: Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52, 197206 (2018).
15.Kim, K., Zhu, W., Qu, X., Aaronson, C., McCall, W.R., Chen, S., et al. : 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8, 97999806 (2014).
16.Kim, H., Torres, F., Wu, Y., Villagran, D., Lin, Y., and Tseng, T.-L.B.: Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26, 085027 (2017).
17.Kim, H., Johnson, J., Chavez, L.A., Rosales, C.A.G., Tseng, T.-L.B., and Lin, Y.: Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing. Ceram. Int. 44, 90379044 (2018).
18.Bodkhe, S., Turcot, G., Gosselin, F.P., and Therriault, D.: One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interface. 9, 2083320842 (2017).
19.Vaezi, M., Chianrabutra, S., Mellor, B., and Yang, S.: Multiple material additive manufacturing–Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virt. Phys. Prototyping 8, 1950 (2013).
20.Song, X.: Slurry Based Stereolithography: A Solid Freeform Fabrication Method of Ceramics and Composites (University of Southern California Libraries, University of Southern California, 2016).
21.Stansbury, J.W. and Idacavage, M.J.: 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32, 5464 (2016).10.1016/
22.Dizon, J.R.C., Espera, A.H. Jr, Chen, Q., and Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 4467 (2018).
23.Hull, C.W.. Apparatus for production of three-dimensional objects by stereolithography. Google Patents, 1986.
24.Zarek, M., Layani, M., Cooperstein, I., Sachyani, E., Cohn, D., and Magdassi, S.: 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28, 44494454 (2016).
25.Polyvinylidene fluoride: Wikipedia: (cited 1 December 2019).
26.Liu, F., Hashim, N.A., Liu, Y., Abed, M.M., and Li, K.: Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 127 (2011).
27.Kim, H., Shuvo, M.A.I., Karim, H., Noveron, J.C., Tseng, T.-l, and Lin, Y.: Synthesis and characterization of CeO2 nanoparticles on porous carbon for Li-ion battery. MRS Adv. 2, 32993307 (2017).
28.Kim, H., Shuvo, M.A.I., Karim, H., Nandasiri, M.I., Schwarz, A.M., Vijayakumar, M., et al. : Porous carbon/CeO2 nanoparticles hybrid material for high-capacity super-capacitors. MRS Adv. 2, 24712480 (2017).
29.Žagar, E. and Žigon, M.: Solution properties of carboxylated polyurethanes and related ionomers in polar solvents (DMF and LiBr/DMF). Polymer 41, 35133521 (2000).
30.Cai, Y. and Jessop, J.L.: Photopolymerization, Free Radical. (Encyclopedia of Polymer Science and Technology, 2004).
31.Inceoglu, S., Olugebefola, S.C., Acar, M.H., and Mayes, A.M.: Atom transfer radical polymerization using poly (vinylidene fluoride) as macroinitiator. Des. Monomers Polym. 7, 181189 (2004).
32.Zhang, D. and Yang, X.: Precipitation polymerization. In Encyclopedia of Polymeric Nanomaterials, edited by Kobayashi, S., and Müllen, K.. (Springer, Berlin/Heidelberg, 2021) pp. 110.
33.Wang, D., Li, K., and Teo, W.: Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J. Membr. Sci. 178, 1323 (2000).
34.Cai, X., Lei, T., Sun, D., and Lin, L.: A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 7, 1538215389 (2017).10.1039/C7RA01267E
35.Mandal, D., Henkel, K., and Schmeißer, D.: The electroactive β-phase formation in Poly (vinylidene fluoride) by gold nanoparticles doping. Mater. Lett. 73, 123125 (2012).10.1016/j.matlet.2011.11.117
36.Ince-Gunduz, B.S., Alpern, R., Amare, D., Crawford, J., Dolan, B., Jones, S., et al. : Impact of nanosilicates on poly (vinylidene fluoride) crystal polymorphism: Part 1. Melt-crystallization at high supercooling. Polymer 51, 14851493 (2010).10.1016/j.polymer.2010.01.011
37.Ishtiaque Shuvo, M.A., Rodriguez, G., Islam, M.T., Karim, H., Ramabadran, N., Noveron, J.C., et al. : Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performance lithium ion battery. J. Appl. Phys. 118, 125102 (2015).10.1063/1.4931380
38.Islam, M.T., Hernandez, C., Ahsan, M.A., Pardo, A., Wang, H., and Noveron, J.C.: Sulfonated resorcinol-formaldehyde microspheres as high-capacity regenerable adsorbent for the removal of organic dyes from water. J. Environ. Chem. Eng. 5, 52705279 (2017).10.1016/j.jece.2017.10.003
39.Pal, S., Islam, M.T., Moore, J.T., Reyes, J., Pardo, A., Varela-Ramirez, A., et al. : Self-assembly of a novel Cu(II) coordination complex forms metallo-vesicles that are able to transfect mammalian cells. New J. Chem. 41, 1123011237 (2017).10.1039/C7NJ02161E
40.Biswas, M., Libera, J.A., Darling, S.B., and Elam, J.W.: Kinetics for the sequential infiltration synthesis of alumina in poly (methyl methacrylate): an infrared spectroscopic study. J. Phy. Chem. C 119, 1458514592 (2015).
41.Duan, G., Zhang, C., Li, A., Yang, X., Lu, L., and Wang, X.: Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res. Lett. 3, 118 (2008).10.1007/s11671-008-9123-7
42.Bai, H., Wang, X., Zhou, Y., and Zhang, L.: Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci. Mater. Int. 22, 250257 (2012).10.1016/j.pnsc.2012.04.011
43.Vinogradov, A. and Holloway, F.: Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226, 169181 (1999).
Type Description Title
Supplementary materials

Kim et al. supplementary material
Figures S1-S4

 Word (3.0 MB)
3.0 MB

3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique

  • Hoejin Kim (a1), Luis Carlos Delfin Manriquez (a1), Md Tariqul Islam (a2), Luis A. Chavez (a1), Jaime E. Regis (a1), Md Ariful Ahsan (a2), Juan C. Noveron (a2), Tzu-Liang B. Tseng (a3) and Yirong Lin (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed