Skip to main content Accessibility help

Visualizing reacting single atoms in chemical reactions: Advancing the frontiers of materials research

  • Edward D. Boyes (a1) and Pratibha L. Gai (a2)


Heterogeneous gas–solid catalyst reactions occur at the atomic level, and understanding and controlling complex catalytic reactions at this level is crucial for the development of improved processes and materials. There are postulations that single atoms and very small clusters can act as primary active sites in chemical reactions. Early applications of our novel aberration-corrected (AC) environmental (scanning) transmission electron microscope (E(S)TEM) with single-atom resolution are described. This instrument combines, for the first time, controlled operating temperatures and a continuous gas environment around the sample with full AC STEM capabilities for real-time in situ analysis and visualization of single atoms and clusters in nanoparticle catalysis. ESTEM imaging and analysis in controlled gas and temperature environments can provide unique insights into catalytic reaction pathways that may involve metastable intermediate states. Benefits include new knowledge and more environmentally friendly technological processes for health care and renewable energy as well as improved or replacement mainstream technologies in the chemical and energy industries.



Hide All
1.Gai, P.L., Boyes, E.D., Microsc. Res. Tech. 72, 153 (2009).
2.Gai, P.L., Kourtakis, K., Science 267, 661 (1995).
3.Boyes, E.D., Gai, P.L., Ultramicroscopy 67, 219 (1997).
4.Haggin, J., Chem. Eng. News 73 (30), 39 (1995).
5.Gai, P.L., Adv. Mater. 10, 1259 (1998).
6.Butler, E.P., Hale, K.F., Dynamic Experiments in the Electron Microscope (North Holland, Amsterdam, 1981).
7.Gai, P.L., Boyes, E.D., Helveg, S., Hansen, P.L., Giorgio, S., Henry, C.R., MRS Bull. 32 (12), 1044 (2007).
8.Gai, P.L., Sharma, R., Ross, F.M., MRS Bull. 33 (2), 107 (2008).
9.Helveg, S., Hansen, P.L., Catal. Today 111, 68 (2005).
10.Sharma, R., Crozier, P.A., in Handbook of Microscopy for Nanotechnology, Yao, N., Wang, Z., Eds. (Kluwer, Dordrecht, The Netherlands, 2005), chap. 17.
11.Zakhaov, D., Zamylrov, D., Mane, A., Elam, J., Ribiero, F., Stach, E., Microsc. Microanal. 12, 2 (2006).
12.Lopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M.A., Blanco, G., Perez-Omil, J.A., Pintado, J.M., Helveg, S., Hansen, P.L.Chem. Commun. 5, 644 (2003).
13.Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E.. Mater. Sci. Technol. 26, 1338 (2010).
14.Walsh, M., Yoshida, K., Kuwabara, A., Pay, M., Gai, P.L., Boyes, E.D., Nano Lett. 12, 2027 (2012).
15.Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392, 768 (1998).
16.Gai, P.L., Boyes, E.D., Microsc. Microanal. 11, 1526 (2005).
17.Boyes, E.D., Gai, P.L., C.R. Phys. 15, 200 (2014).
18.Boyes, E.D., Ward, M., Lari, L., Gai, P.L., Ann. Phys. (Berlin) 525, 423 (2013).
19.Gai, P.L., Lari, L., Ward, M., Boyes, E.D., Chem. Phys. Lett. 592, 355 (2014).
20.Urban, K., Jia, C.L., Houben, L., Lentzen, M., Mi, S.B., Tillman, K.. Philos. Trans. R. Soc. Lond. A 367, 3735 (2009).
21.Crewe, A.V., Wall, J., Langmore, J., Science 168, 1338 (1970).
22.LeBeau, J.M., Findlay, S.D., Wang, X., Jacobson, A.J., Allen, L.J., Stemmer, S., Phys. Rev. B Condens. Matter 79, 214110 (2009).
23.Batson, P., Dalby, N., Krivanek, O., Nature 418, 617 (2002).
24.Gai, P.L., Montero, J., Wilson, K., Lee, A., Boyes, E.D., Catal. Lett. 132, 182 (2009).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed