Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T05:54:58.243Z Has data issue: false hasContentIssue false

Ultrafast Imaging of Materials: Exploring the Gap of Space and Time

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The materials science community is poised to take advantage of new technologies that add unprecedented time resolution to already existing spatial-resolution capabilities. In the same way that chemists and biologists are using ultrafast optical, photon, and particle techniques to reveal transition pathways, materials scientists can expect to use variations of these methods to probe the most fundamental aspects of complex transient phenomena in materials. The combination of high-spatial-resolution imaging with high time resolution is critical because it enables the observation of specific phenomena that are important to developing fundamental understanding. Such a capability is also important because it enables experiments that are on the same time and length scales as recent high-performance computer simulations. This article describes several new techniques that have great potential for broader application in materials science, including electron, x-ray, and γ-ray imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sorby, H.C.J. Iron & Steel Inst. 30 (1886) p. 140.Google Scholar
2Sorby, H.C.J. Iron & Steel Inst. 31 (1887) p. 255.Google Scholar
3Hirsch, P.B.Horne, R.W. and Whelan, M.J.Philos. Mag. 1 (1956) p. 677.Google Scholar
4Glinec, Y.Faure, J.Dain, L.L.Darbon, S.Hosokai, T.Santos, J.J.Lefebvre, E.Rousseau, J.P.Burgy, F.Mercier, B. and Malka, V.Phys. Rev. Lett. 94 025003 (2005).CrossRefGoogle Scholar
5King, W.E.Campbell, G.H.Frank, A.Reed, B.Schmerge, J.F.Siwick, B.J.Stuart, B.C. and Weber, P.M.J. Appl. Phys. 97 111101 (2005).Google Scholar
6Bostanjoglo, O.Adv. Imaging & Electron Phys. 121 (2002) p. 1.Google Scholar
7Dömer, H. and Bostanjoglo, O.Rev. Sci. Instrum. 74 (2003) p. 4369.Google Scholar
8Lobastov, V.A.Srinivasan, R. and Zewail, A.H.Proc. Natl. Acad. Sci. USA 102 (2005) p. 7069.CrossRefGoogle Scholar
9Zewail, A.H.Philos. Trans. R. Soc. London Ser. A 363 (2005) p. 315.Google Scholar
10Bostanjoglo, O. and Rosin, T.Phys. Status Solidi A 57 (1980) p. 561.CrossRefGoogle Scholar
11Thomas, J.M.Angew. Chem. Int. Ed. 44 (2005) p. 5563.CrossRefGoogle Scholar
12Gaffney, K.J.Lindenberg, A.M.Larsson, J.Sokolowski-Tinten, K., Blome, C.Synnergren, O.Sheppard, J.Caleman, C.MacPhee, A.G.Weinstein, D.Lowney, D.P.Allison, T.Matthews, T.Falcone, R.W.Cavalieri, A.L.Fritz, D.M.Lee, S.H.Bucksbaum, P.H.Reis, D.A.Rudati, J.Macrander, A.T.Fuoss, P.H.Kao, C.C.Siddons, D.P.Pahl, R.Moffat, K.Als-Nielsen, J., Duesterer, S.Ischebeck, R.Schlarb, H.Schulte-Schrepping, H., Schneider, J.Linde, D. von der, Hignette, O.Sette, F.Chapman, H.N.Lee, R.W.Hansen, T.N.Wark, J.S.Bergh, M.Huldt, G.Spoel, D. van der, Timneanu, N.Hajdu, J.Akre, R.A.Bong, E.Krejcik, P.Arthur, J.Brennan, S.Luening, K. and Hastings, J.B.Phys. Rev. Lett. 95 125701 (2005).Google Scholar
13Schotte, F.Lim, M.H.Jackson, T.A.Smirnov, A.V.Soman, J.Olson, J.S.Phillips, G.N.Wulff, M. and Anfinrud, P.A.Science 300 (2003) p. 1944.CrossRefGoogle Scholar
14Siwick, B.J.Dwyer, J.R.Jordan, R.E. and Miller, R.J.D.Science 302 (2003) p. 1382.CrossRefGoogle Scholar
15Siwick, B.J.Dwyer, J.R.Jordan, R.E. and Miller, R.J.D.Chem. Phys. 299 (2004) p. 285.CrossRefGoogle Scholar
16Jansen, G.H.Coulomb Interactions in Particle Beams, Vol. 21 (Academic Press, San Diego, CA, 1990) p. 546.Google Scholar
17Liddle, J.A.Blakey, M.I.Bolan, K.Farrow, R.C.Gallatin, G.M.Kasica, R.Katsap, V.Knurek, C.S.Li, J.Mkrtchyan, M.Novembre, A.E.Ocola, L.Orphanos, P.A.Peabody, M.L.Stanton, S.T.Teffeau, K.Waskiewicz, W.K. and Munro, E.J. Vac. Sci. Technol., B 19 (2001) p. 476.Google Scholar
18James, E.M.Browning, N.D.Nicholls, A.W.Kawasaki, M.Xin, Y. and Stemmer, S.J. Electron Microsc. 47 (1998) p. 561.Google Scholar
19Spivak, G.V.Pavlyuchenko, O.P. and Petrov, V.I.Bull. Acad. Sci. USSR 30 (1966) p. 822.Google Scholar
20Minor, A.M.Lilleodden, E.T.Stach, E.A. and Morris, J.W.J. Mater. Res. 19 (2004) p. 176.CrossRefGoogle Scholar
21Tan, X.L.He, H. and Shang, J.K.J. Mater. Res. 20 (2005) p. 1641.Google Scholar
22Linac Coherent Light Source (LCSC) home page, www-ssrl.slac.stanford.edu/lcls/ (accessed July 2006).Google Scholar
23“TESLA Technical Design Report, Part V: The X-Ray Free Electron Laser,” edited by G. Materlik and Th. Tschentscher http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html (accessed July 2006).Google Scholar
24Bloembergen, N.Rev. Mod. Phys. 71 (1999) p. S283.Google Scholar
25Rousse, A.Rischel, C. and Gauthier, J.C.Rev. Mod. Phys. 73 (2001) p. 17.Google Scholar
26Bressler, C. and Chergui, M.Chem. Rev. 104 (2004) p. 1781.Google Scholar
27Rischel, C.Rousse, A.Uschmann, I.Albouy, P.A.Geindre, J.P.Audebert, P.Gauthier, J.C.Forster, E.Martin, J.L. and Antonetti, A.Nature 390 (1997) p. 490.Google Scholar
28Siders, C.W.Cavalleri, A.Sokolowski-Tinten, K., Toth, C.Guo, T.Kammler, M.Hoegen, M.H. von, Wilson, K.R.Linde, D. von der, and Barty, C.P.J.Science 286 (1999) p. 1340.Google Scholar
29Rose-Petruck, C., Jimenez, R.Guo, T.Cavalleri, A.Siders, C.W.Raksi, F.Squier, J.A.Walker, B.C.Wilson, K.R. and Barty, C.P.J.Nature 398 (1999) p. 310.CrossRefGoogle Scholar
30Rousse, A.Rischel, C.Fourmaux, S.Uschmann, I.Sebban, S.Grillon, G.Balcou, P.Foster, E.Geindre, J.P.Audebert, P.Gauthier, J.C. and Hulin, D.Nature 410 (2001) p. 65.Google Scholar
31Sokolowski-Tinten, K., Blome, C.Dietrich, C.Tarasevitch, A.Hoegen, M.H. von, Linde, D. von der, Cavalleri, A.Squier, J. and Kammler, M., Phys. Rev. Lett. 87 225701 (2001).Google Scholar
32Cavalleri, A.Toth, C.Siders, C.W.Squier, J.A.Raksi, F.Forget, P. and Kieffer, J.C.Phys. Rev. Lett. 87 237401 (2001).Google Scholar
33Feurer, T.Morak, A.Uschmann, I.Ziener, C.Schwoerer, H.Reich, C.Gibbon, P.Forster, E.Sauerbrey, R.Ortner, K. and Becker, C.R.Phys. Rev. E 65 016412 (2002).Google Scholar
34Sokolowski-Tinten, K., Blome, C.Blums, J.Cavalleri, A.Dietrich, C.Tarasevitch, A.Uschmann, I.Forster, E.Kammler, M.Hornvon-Hoegen, M., and Linde, D. von der, Nature 422 (2003) p. 287.Google Scholar
35Rousse, A.Audebert, P.Geindre, J.P.Fallies, F.Gauthier, J.C.Mysyrowicz, A.Grillon, G. and Antonetti, A.Phys. Rev. E 50 (1994) p. 2200.CrossRefGoogle Scholar
36Tajima, T. and Dawson, J.M.Phys. Rev. Lett. 43 (1979) p. 267.Google Scholar
37Kostyukov, I.Kiselev, S. and Pukhov, A.Phys. Plasmas 10 (2003) p. 4818.Google Scholar
38Pukhov, A. and Meyer-ter-Vehn, J., Appl. Phys. B 74 (2002) p. 355.Google Scholar
39Rousse, A.Phuoc, K.T.Shah, R.Pukhov, A.Lefebvre, E.Malka, V.Kiselev, S.Burgy, F.Rousseau, J.P.Umstadter, D. and Hulin, D.Phys. Rev. Lett. 93 135005 (2004).Google Scholar
40Phuoc, K.T.Burgy, F.Rousseau, J.P.Malka, V.Rousse, A.Shah, R.Umstadter, D.Pukhov, A. and Kiselev, S.Phys. Plasmas 12 023101 (2005).Google Scholar
41Chen, Y.-J.Bertolini, L.R.Caporaso, G.J.Chambers, F.W.Cook, E.G.Falabella, S.Goldin, F.J.Guethlein, G.Ho, D.D.-M.McCarrick, J.F.Nelson, S.D.Neurath, R.Paul, A.C.Pincosy, P.A.Poole, B.R.Richardson, R.A.Sampayan, S.Wang, L.-F. and Watson, J.A. presented at the XXI Intl. Linac Conf. (Gyeongju, Korea, August 19–23, 2002).Google Scholar
42Mangles, S.P.D.Murphy, C.D.Najmudin, Z.Thomas, A.G.R.Collier, J.L.Dangor, A.E.Divall, E.J.Foster, P.S.Gallacher, J.G.Hooker, C.J.Jaroszynski, D.A.Langley, A.J.Mori, W.B.Norreys, P.A.Tsung, F.S.Viskup, R.Walton, B.R. and Krushelnick, K.Nature 431 (2004) p. 535.Google Scholar
43Geddes, C.G.R.Toth, C.Tilborg, J. van, Esarey, E.Schroeder, C.B.Bruhwiler, D.Nieter, C.Cary, J. and Leemans, W.P.Nature 431 (2004) p. 538.CrossRefGoogle Scholar
44Faure, J.Glinec, Y.Pukhov, A.Kiselev, S.Gordienko, S.Lefebvre, E.Rousseau, J.P.Burgy, F. and Malka, V.Nature 431 (2004) p. 541.Google Scholar
45LaGrange, T.Armstrong, M.A.Boyden, K.R.Brown, C.G.Browning, N.D.Campbell, G.H.Colvin, J.D.DeHope, W.J.Frank, A.M.Gibson, D.J.Hartemann, F.V.Kim, J.S.King, W.E.Pyke, B.J.Reed, B.W.Shirk, M.D.Shuttlesworth, R.M.Stuart, B.C. and Torralva, B.R.Single Shot Dynamic Transmission Electron Microscopy,” Appl. Phys. Lett. 89 044105 (2006).Google Scholar