Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T08:41:19.896Z Has data issue: false hasContentIssue false

Ultrafast Carrier Dynamics, Optical Amplification, and Lasing in Nanocrystal Quantum Dots

Published online by Cambridge University Press:  03 May 2012

Get access

Extract

Semiconductor materials are widely used in both optically and electrically pumped lasers. The use of semiconductor quantum wells (QWs) as optical-gain media has resulted in important advances in laser technology. QWs have a two-dimensional, step-like density of electronic states that is nonzero at the band edge, enabling a higher concentration of carriers to contribute to the band-edge emission and leading to a reduced lasing threshold, improved temperature stability, and a narrower emission line. A further enhancement in the density of the band-edge states and an associated reduction in the lasing threshold are in principle possible using quantum wires and quantum dots (QDs), in which the confinement is in two and three dimensions, respectively. In very small dots, the spacing of the electronic states is much greater than the available thermal energy (strong confinement), inhibiting thermal depopulation of the lowest electronic states. This effect should result in a lasing threshold that is temperatureinsensitive at an excitation level of only 1 electron-hole (e-h) pair per dot on average. Additionally, QDs in the strongconfinement regime have an emission wavelength that is a pronounced function of size, adding the advantage of continuous spectral tunability over a wide energy range simply by changing the size of the dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Asada, M.Miyamoto, Y. and Suematsu, Y.IEEE J.Quantum Electron. 22 (1986) p.1915.CrossRefGoogle Scholar
2.Ledentsov, N.N.Ustinov, V.M.Egorov, A.Y.Zhukov, A.E.Maksimov, M.V.Tabatadze, I.G. and Kopev, P.S.Semiconductors 28 (1994) p. 832.Google Scholar
3.Kistaedter, N.Ledentsov, N.N.Grundmann, M.Bimberg, D.Ustinov, V.M.Ruvimov, S.S.Maximov, M.V.Kopev, P.S.Alferov, Z.I. and Richter, U.Electron. Lett. 30 (1994) p.1416.CrossRefGoogle Scholar
4.Murray, C.B.Norris, D.J. and Bawendi, M.G.J.Am. Chem. Soc. 115 (1993) p.8706.CrossRefGoogle Scholar
5.Hines, M. and Guyot-Sionnest, P., J.Phys. Chem. 100 (1996) p.468.CrossRefGoogle Scholar
6.Butty, J., Hu, Y.Z.Peyghambarian, N.Kao, Y.H. and Mackenzie, J.D.Appl. Phys. Lett. 67 (1995) p.2672.CrossRefGoogle Scholar
7.Gindele, F.Westphaeling, R.Woggon, U.Spanhel, L., and Ptatschek, V.Appl. Phys. Lett. 71 (1997) p.2181.CrossRefGoogle Scholar
8.Benisty, H.Sotomayor-Torres, C., and Weisbuch, C.Phys. Rev. B 44 (1991) p.10945.CrossRefGoogle Scholar
9.Inoshita, T. and Sakaki, H.Phys. Rev. B 46 (1992) p.7260.CrossRefGoogle Scholar
10.Klimov, V.I.Mikhailovsky, A.A.McBranch, D.W.Leatherdale, C.A. and Bawendi, M.G.Science 287 (2000) p.1011.CrossRefGoogle Scholar
11.Ekimov, A.I.Hache, F.Schanne-Klein, M.C., Ricard, D.Flytzanis, C.Kudryavtsev, I.A.Yazeva, T.V.Rodina, A.V. and Efros, A.L.J.Opt. Soc. Am. B 10 (1993) p.100.CrossRefGoogle Scholar
12.Norris, D. and Bawendi, M.Phys. Rev. B 53 (1996) p.16338.CrossRefGoogle Scholar
13.Nirmal, M.Norris, D.Kuno, M.Bawendi, M.G.Efros, A.L. and Rosen, M.Phys. Rev. Lett. 75 (1995) p.3728.CrossRefGoogle Scholar
14.Klimov, V. and McBranch, D.Phys. Rev. Lett. 80 (1998) p.4028.CrossRefGoogle Scholar
15.Sosnowskii, T.S.Norris, T.Jiang, H.Singh, J., Kamat, K. and Bhattacharya, P.Phys. Rev. B 57 (1998) p.9423.CrossRefGoogle Scholar
16.Efros, A.L.Kharchenko, V.A. and Rosen, M.Solid State Commun. 93 (1995) p.281.CrossRefGoogle Scholar
17.Guyot-Sionnest, P., Shim, M.Matranga, C. and Hines, M.A.Phys. Rev. B 60 (1999) p.R2181.CrossRefGoogle Scholar
18.Klimov, V.I.Mikhailovsky, A.A.McBranch, D.W.Leatherdale, C.A. and Bawendi, M.G.Phys. Rev. B 61 (2000) p.R13349.CrossRefGoogle Scholar
19.Klimov, V.I.Mikhailovsky, A.A.Xu, S. A.Malko, Hollingsworth, J.A.Leatherdale, C.A.Eisler, H.-J. and Bawendi, M.G.Science 290 (2000) p.314.CrossRefGoogle Scholar
20.Klimov, V.I.Schwarz, Ch.J., McBranch, D.W.Leatherdale, C.A. and Bawendi, M.G.Phys. Rev. B 60 (1999) p.R2177.CrossRefGoogle Scholar
21.Chepic, D.Efros, A.L.Ekimov, A.Ivanov, M.Kharchenko, V.A.Kudriavtsev, I. and Yazeva, T.V.J.Lumin. 47 (1990) p.113.CrossRefGoogle Scholar
22.Klimov, V.I.J.Phys. Cem. B 104 (2000) p.6112.CrossRefGoogle Scholar