Skip to main content Accessibility help
×
Home

Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications

  • Eric M. Vogel (a1) and Joshua A. Robinson (a2)

Abstract

Transition-metal dichalcogenides (TMDCs) are compounds consisting of a transition-metal M (Ti, Hf, Zr, V, Nb, Ta, Mo, W, Tc, Re, Pd, Pt) and chalcogen atoms X (S, Se, Te). There are approximately 60 compounds in the metal chalcogenide family, and two-thirds of them are in the form of layered structures where the in-plane bonds are strong (covalent), and the out-of-plane bonds are weak (van der Waals). This provides a means to mechanically or chemically thin (exfoliate) these materials down to a single atomic two-dimensional (2D) layer. While graphene, the 2D form of graphite, is metallic, the layered metal chalcogenides cover a wide range of electrical properties, from true metals (NbS2) and superconductors (TaS2) to semiconductors (MoS2) with a wide range of bandgaps and offsets. Multiple techniques are currently being developed to synthesize large-area monolayers, including alloys, and lateral and vertical heterostructures. The wide range of properties and the ability to tune them on an atomic scale has led to numerous applications in electronics, optoelectronics, sensors, and energy. This article provides an introduction to TMDCs, serving as a background for the articles in this issue of MRS Bulletin.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications
      Available formats
      ×

Copyright

References

Hide All
1.Clauss, F.J., Solid Lubricants and Self-Lubricating Solids (Elsevier, New York 1972).
2.Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L., Nat. Nanotechnol. 9, 768 (2014).
3.Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Nat. Nanotechnol. 7, 699 (2012).
4.Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
5.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A., Nature 438, 197 (2005).
6.Lévy, F., Ed., Crystallography and Crystal Chemistry of Materials with Layered Structures (Springer Netherlands, Dordrecht, 1976).
7.Gong, C., Zhang, H., Wang, W., Colombo, L., Wallace, R.M., Cho, K., Appl. Phys. Lett. 103, 053513 (2013).
8.Golden, J., McMillan, M., Downs, R.T., Hystad, G., Goldstein, I., Stein, H.J., Zimmerman, A., Sverjensky, D.A., Armstrong, J.T., Hazen, R.M., Earth Planet. Sci. Lett. 366, 1 (2013).
9.Eggertsen, F.T., Roberts, R.M., J. Phys. Chem. 63, 1981 (1959).
10.Yagoda, H., Fales, H.A., J. Am. Chem. Soc. 58, 1494 (1936).
11.Arutyuny, L.A., Khurshud, E.K., Geochem. Int. USSR 3, 479 (1966).
12.Wilson, J.A., Yoffe, A.D., Adv. Phys. 18, 193 (1969).
13.Wieting, T.J., Schlüter, M., Eds., Electrons and Phonons in Layered Crystal Structures (Springer Netherlands, Dordrecht, 1979).
14.Motizuki, K., Ed., Structural Phase Transitions in Layered Transition Metal Compounds (Springer Netherlands, Dordrecht, 1986).
15.Lieth, R.M.A., Ed., Preparation and Crystal Growth of Materials with Layered Structures (Springer Netherlands, Dordrecht, 1977).
16.Lee, P.A., Ed., Optical and Electrical Properties (Springer Netherlands, Dordrecht, 1976).
17.Grasso, V., Ed., Electronic Structure and Electronic Transitions in Layered Materials (Springer Netherlands, Dordrecht, 1986).
18.Joensen, P., Frindt, R.F., Morrison, S.R., Mater. Res. Bull. 21, 457 (1986).
19.Nat. Mater. 10, 1 (2011).
20.Khelil, A., Essaidi, H., Bernede, J., Pouzet, J., Mebarki, M., Ann. Chimie. Sci. Materiaux 21, 295 (1996).
21.Khelil, A., Essaidi, H., Bernede, J.C., Bouacheria, A., Pouzet, J., J. Phys. Condens. Matter 6, 8527 (1994).
22.Hadouda, H., Pouzet, J., Bernede, J.C., Barreau, A., Mater. Chem. Phys. 42, 291 (1995).
23.Tarasov, A., Campbell, P.M., Tsai, M.-Y., Hesabi, Z.R., Feirer, J., Graham, S., Ready, W.J., Vogel, E.M., Adv. Funct. Mater. 24, 6389 (2014).
24.Salvatore, G.A., Münzenrieder, N., Barraud, C., Petti, L., Zysset, C., Büthe, L., Ensslin, K., Tröster, G., ACS Nano 7, 8809 (2013).
25.Xie, X., Sarkar, D., Liu, W., Kang, J., Marinov, O., Jamal Deen, M., Banerjee, K., ACS Nano 8, 5633 (2014).
26.Nan, H., Wang, Z., Wang, W., Liang, Z., Lu, Y., Chen, Q., He, D., Tan, P., Miao, F., Wang, X., Wang, J., Ni, Z., ACS Nano 8, 5738 (2014).
27.Yoon, J., Park, W., Bae, G.-Y., Kim, Y., Jang, H.S., Hyun, Y., Lim, S.K., Kahng, Y.H., Hong, W.-K., Lee, B.H., Ko, H.C., Small 9, 3295 (2013).
28.Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F., Nano Lett. 10, 1271 (2010).
29.Das, S., Chen, H.-Y., Penumatcha, A.V., Appenzeller, J., Nano Lett. 13, 100 (2013).
30.Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., Nano Lett. 12, 3788 (2012).
31.Liu, W., Kang, J., Sarkar, D., Khatami, Y., Jena, D., Banerjee, K., Nano Lett. 13, 1983 (2013).
32.Terrones, H., Del Corro, E., Feng, S., Poumirol, J.M., Rhodes, D., Smirnov, D., Pradhan, N.R., Lin, Z., Nguyen, M.A.T., Elías, A.L., Mallouk, T.E., Balicas, L., Pimenta, M.A., Terrones, M., Sci. Rep. 4, 4215 (2014).
33.Mercier, J., J. Cryst. Growth 56, 235 (1982).
34.Liu, Y., Ang, R., Lu, W.J., Song, W.H., Li, L.J., Sun, Y.P., Appl. Phys. Lett. 102, 192602 (2013).
35.Ang, R., Miyata, Y., Ieki, E., Nakayama, K., Sato, T., Liu, Y., Lu, W.J., Sun, Y.P., Takahashi, T., Phys. Rev. B: Condens. Matter 88, 115145 (2013).
36.Al-Hilli, A.A., Evans, B.L., J. Cryst. Growth 15, 93 (1972).
37.Lin, Y.-C., Zhang, W., Huang, J.-K., Liu, K.-K., Lee, Y.-H., Liang, C.-T., Chu, C.-W., Li, L.-J., Nanoscale 4, 6637 (2012).
38.Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., Lou, J., Small 8, 966 (2012).
39.Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., Yu, Y.-C., Wang, J.T.-W., Chang, C.-S., Li, L.-J., Lin, T.-W., Adv. Mater. 24, 2320 (2012).
40.Yu, Y., Li, C., Liu, Y., Su, L., Zhang, Y., Cao, L., Sci. Rep. 3, 1866 (2013).
41.Elías, A.L., Perea-López, N., Castro-Beltrán, A., Berkdemir, A., Lv, R., Feng, S., Long, A.D., Hayashi, T., Kim, Y.A., Endo, M., Gutiérrez, H.R., Pradhan, N.R., Balicas, L., Mallouk, T.E., López-Urías, F., Terrones, H., Terrones, M., ACS Nano 7, 5235 (2013).
42.Gutiérrez, H.R., Perea-López, N., Elías, A.L., Berkdemir, A., Wang, B., Lv, R., López-Urías, F., Crespi, V.H., Terrones, H., Terrones, M., Nano Lett. 13, 3447 (2013).
43.Eichfeld, S.M., Hossain, L., Lin, Y.-C., Piasecki, A.F., Kupp, B., Birdwell, A.G., Burke, R.A., Lu, N., Peng, X., Li, J., Azcatl, A., McDonnell, S., Wallace, R.M., Kim, M.J., Mayer, T.S., Redwing, J.M., Robinson, J.A., ACS Nano 9, 2080 (2015).
44.Brewer, L., Lamoreaux, R.H., in Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., Ed. (ASM International, Materials Park, OH, 1990), vol. 3, pp. 26602661.
45.Brewer, L., Lamoreaux, R.H., in Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., Ed. (ASM International, Materials Park, OH, 1990), pp. 26642665.
46.Brewer, L., Lamoreaux, R.H., in Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B., Ed. (ASM International, Materials Park, OH, 1990), pp. 26752676.
47.Feynman, R., American Physical Society Annual Meeting (American Physical Society, California Institute of Technology, 1959).
48.Das, S., Robinson, J.A., Dubey, M., Terrones, H., Terrones, M., Annu. Rev. Mater. Res. 45 (forthcoming), available at http://www.annualreviews.org/doi/abs/10.1146/annurev-matsci-070214–021034.
49.Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H., Nat. Chem. 5, 263 (2013).
50.Kang, J., Tongay, S., Li, J., Wu, J., J. Appl. Phys. 113, 143703 (2013).
51.Guzman, D.M., Strachan, A., J. Appl. Phys. 115, 243701 (2014).
52.Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J., Appl. Phys. Lett. 102, 012111 (2013).
53.Padilha, J.E., Peelaers, H., Janotti, A., Van de Walle, C.G., Phys. Rev. B: Condens. Matter 90, 1 (2014).
54.Komsa, H.P., Krasheninnikov, A.V., Phys. Rev. B: Condens. Matter 88, 1 (2013).
55.Kiriya, D., Tosun, M., Zhao, P., Kang, J.S., Javey, A., J. Am. Chem. Soc. 136, 7853 (2014).
56.Zhao, P., Kiriya, D., Azcatl, A., Zhang, C., Tosun, M., Liu, Y.-S., Hettick, M., Kang, J.S., McDonnell, S., Santosh, K.C., Guo, J., Cho, K., Wallace, R.M., Javey, A., ACS Nano 8, 10808 (2014).
57.Yang, L., Majumdar, K., Liu, H., Du, Y., Wu, H., Hatzistergos, M., Hung, P.Y., Tieckelmann, R., Tsai, W., Hobbs, C., Ye, P.D., Nano Lett. 14, 6275 (2014).
58.Baugher, B.W.H., Churchill, H.O.H., Yang, Y., Jarillo-Herrero, P., Nat. Nanotechnol. 9, 262 (2014).
59.Tarasov, A., Zhang, S., Tsai, M.-Y., Campbell, P.M., Graham, S., Barlow, S., Marder, S.R., Vogel, E.M., Adv. Mater. 27, 1175 (2015).
60.Ubrig, N., Jo, S., Berger, H., Morpurgo, A.F., Kuzmenko, A.B., Appl. Phys. Lett. 104, 171112 (2014).
61.Fathipour, S., Xu, H., Kinder, E., Fullerton-Shirey, S., Seabaugh, A., IEEE Device Res. Conf. (DRC) Proc. (IEEE, New York, 2014), pp. 125126.
62.Suh, J., Park, T.-E., Lin, D.-Y., Fu, D., Park, J., Jung, H.J., Chen, Y., Ko, C., Jang, C., Sun, Y., Sinclair, R., Chang, J., Tongay, S., Wu, J., Nano Lett. 14, 6976 (2014).
63.Carvalho, A., Neto, A.H.C., Phys. Rev. B: Condens. Matter 89, 081406 (2014).
64.Komsa, H.-P., Berseneva, N., Krasheninnikov, A.V., Nieminen, R.M., Phys. Rev. X 4, 031044 (2014).
65.Roy, T., Tosun, M., Kang, J.S., Sachid, A.B., Desai, S.B., Hettick, M., Hu, C.C., Javey, A., ACS Nano 8, 6259 (2014).
66.Majumdar, K., Hobbs, C., Kirsch, P.D., IEEE Electron Device Lett. 35, 402 (2014).
67.Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., Hersam, M.C., ACS Nano 8, 1102 (2014).
68.Lam, K., Cao, X., Guo, J., Member, S., IEEE Electron Device Lett. 34, 1331 (2013).
69.Yamaguchi, T., Moriya, R., Inoue, Y., Morikawa, S., Masubuchi, S., Watanabe, K., Taniguchi, T., Machida, T., Appl. Phys. Lett. 105, 223109 (2014).
70.Tsai, M.-L., Su, S.-H., Chang, J.-K., Tsai, D.-S., Chen, C.-H., Wu, C.-I., Li, L.-J., Chen, L.-J., He, J.-H., ACS Nano. 8, 8317 (2014).
71.Donarelli, M., Prezioso, S., Perrozzi, F., Bisti, F., Nardone, M., Giancaterini, L., Cantalini, C., Ottaviano, L., Sens. Actuators B Chem. 207, 602 (2015).
72.Late, D.J., Doneux, T., Bougouma, M., Appl. Phys. Lett. 105, 233103 (2014).
73.Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, K., ACS Nano 8, 3992 (2014).
74.Eng, A.Y.S., Ambrosi, A., Sofer, Z., Simek, P., Pumera, M., ACS Nano 8, 12185 (2014).
75.Guardia, L., Paredes, J.I., Munuera, J.M., Villar-Rodil, S., Ayan-Varela, M., Martinez-Alonso, A., Tascon, J.M.D., ACS Appl. Mater. Interfaces 6, 21702 (2014).
76.Geng, X., Wu, W., Li, N., Sun, W., Armstrong, J., Al-hilo, A., Brozak, M., Cui, J., Chen, T., Adv. Funct. Mater. 24, 6123 (2014).
77.Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M., Nano Lett. 13, 6222 (2013).
78.Zibouche, N., Philipsen, P., Kuc, A., Heine, T., Phys. Rev. B: Condens. Matter 90, 125440 (2014).
79.Yuan, H., Wang, X., Lian, B., Zhang, H., Fang, X., Shen, B., Xu, G., Xu, Y., Zhang, S.-C., Hwang, H.Y., Cui, Y., Nat. Nanotechnol. 9, 851 (2014).
80.Riley, J.M., Mazzola, F., Dendzik, M., Michiardi, M., Takayama, T., Bawden, L., Granerod, C., Leandersson, M., Balasubramanian, T., Hoesch, M., Kim, T.K., Takagi, H., Meevasana, W., Hofmann, P., Bahramy, M.S., Wells, J.W., King, P.D.C., Nat. Phys. 10, 835 (2014).
81.Guinea, F., Katsnelson, M.I., Wehling, T.O., Ann. Phys. 526, A81 (2014).

Keywords

Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications

  • Eric M. Vogel (a1) and Joshua A. Robinson (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed