Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T08:52:48.507Z Has data issue: false hasContentIssue false

Transport in Quantum Dots: Observation of Atomlike Properties

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Recent advances in nanofabrication technologies have enabled us to fabricate semiconductor quantum dots in which electrons are three-dimensionally confined. These quantum dots are often referred to as artificial atoms since their electronic properties—for example the ionization energy and discrete excitation spectrum—resemble those of real atoms. Electrons bound to a nucleus potential encounter sufficiently strong effects of quantum-mechanical confinement and mutual Coulomb interactions that they are well arranged in ordered states, and this leads to the arrangement of atoms in the periodic table. It is well known in atom physics that the threedimensional spherically symmetric potential around atoms gives rise to the shell structure 1s, 2s, 2p, 3s, 3p,…. The ionization energy has a large maximum for atomic numbers 2, 10, 18,…. Up to atomic number 23, these shells are filled sequentially. Hund's rule determines whether a spin-down or a spin-up electron is added. This article describes how closely we can approach the electronic properties of real atoms through the use of semiconductor quantum dots.

Both the effects of quantum confinement and Coulomb interaction become strong in quantum dots when the dot size is comparable to the electron wavelength and contains just a few electrons. The consequence of these factors on transport have only recently been studied in vertical-dot devices, which contain a dot located between source and drain contacts by means of heterostructure tunnel barriers because the few-electron regime is only accessible in the vertical-dot device. Studies include transport measurements through submicron resonant tunneling devices and submicron gated resonant-tunneling devices, and capacitance measurements on submicron double-barrier structures. However quantum-dot devices usually contain some disorder—for instance because of impurities or when the shape of the dot is irregular—which readily causes sample specific inhomogeneity in the electronic properties. Clean quantum dots, in the form of regular disks, have only recently been fabricated in a semiconductor heterostructure (Figure 1), and have been used to study the atomlike properties of artificial atoms.

Type
Semiconductor Quantum Dots
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kastner, M.A., Phys. Today 46 (1993) p. 24.CrossRefGoogle Scholar
2.Johnson, N., J. Phys. Cond. Matter 7 (1995) p. 965.CrossRefGoogle Scholar
3.Schiff, L.I., Quantum Mechanics (MacGraw-Hill, New York, 1949).Google Scholar
4.Reed, M.A., Randall, J.N., Aggarwal, R.J., Matyi, R.J., Moore, T.M., and Wetsel, A.E., Phys. Rev. Lett. 60 (1988) p. 535.CrossRefGoogle Scholar
5.Tarucha, S., Tokura, Y., and Hirayama, Y., Phys. Rev. B 44 (1991) p. 13815.CrossRefGoogle Scholar
6.Su, B., Goldman, V.J., and Cunningham, J.E., Science 255 (1992) p. 313.CrossRefGoogle Scholar
7.Tewordt, M., Martin-Moreno, L., Nicholls, J.T., Pepper, M., Kelly, M.J., Law, V.J., Ritchie, D.A., Frost, J.E.F., and Jones, G.A.C., Phys. Rev. B 45 (1992) p. 14407.CrossRefGoogle Scholar
8.Tarucha, S., Honda, T., Saku, T., and Tokura, Y., Surf. Sci. 305 (1994) p. 547.CrossRefGoogle Scholar
9.Schmidt, T., Tewordt, M., Blick, R.H., Haug, R.J., Pfannkuche, D., von Klitzing, K., Foerster, A., and Lueth, H., Phys. Rev. B 51 (1995) p. 5570.CrossRefGoogle Scholar
10.Dellow, M.W., Beton, P.H., Henini, M., Main, P.C., and Eaves, L., Electron. Lett. 27 (1991) p. 134.CrossRefGoogle Scholar
11.Guéret, P., Blanc, N., Germann, R., and Rothuizen, H., Phys. Rev. Lett. 68 (1992) p. 1896.CrossRefGoogle Scholar
12.Goodings, C.J., Cleaver, J.R.A., and Ahmed, H., Electron. Lett. 28 (1992) p. 1535.CrossRefGoogle Scholar
13.Tarucha, S., Austing, D.G., and Honda, T., Superlattices and Microstructures 18 (1995) p. 121.CrossRefGoogle Scholar
14.Kolagunta, V.R., Janes, D.B., Chen, G.L., Webb, K.J., and Melloch, M.R., Superlattices and Microstructures 17 (1995) p. 339.CrossRefGoogle Scholar
15.Ashoori, R.C., Stoermer, H.L., Weiner, J.S., Pfeiffer, L.N., Baldwin, K.W., and West, K.W., Phys. Rev. Lett. 71 (1993) p. 613.CrossRefGoogle Scholar
16.Ashoori, R.C., Nature (London) 379 (1996) p. 413.CrossRefGoogle Scholar
17.Austing, D.G., Honda, T., and Tarucha, S., Semicond. Sci. Technol. 11 (1996) p. 388.CrossRefGoogle Scholar
18.Tarucha, S., Austing, D.G., Honda, T., van der Hage, R.J., and Kouwenhoven, L.P., Phys. Rev. Lett. 77 (1996) p. 3613.CrossRefGoogle Scholar
19.Macucci, M., Hess, K., and Iafrate, G.J., J. Appl. Phys. 77 (1995) p. 3267.CrossRefGoogle Scholar
20.Meirav, U. and Foxman, E.B., Semicond. Sci. Technol. 10 (1995) p. 255.Google Scholar
21.Kouwenhoven, L.P. and McEuen, P.L., in Nanoscience and Technology, edited by Timp, G. (AIP Press, 1997).Google Scholar
22.Neis, J., Haug, R.J., von Klitzing, K., and Ploog, K., Phys. Rev. Lett. 71 (1993) p. 4019.Google Scholar
23.Tanaka, Y. and Akera, H., J. Phys. Soc. Jpn. 66 (1997) p. 15.CrossRefGoogle Scholar
24.Tamura, H., Physica E in press.Google Scholar
25.Fock, V., Z. Phys. 47 (1928) p. 446.CrossRefGoogle Scholar
26.Darwin, C.G., Proc. Cambridge Philos. Soc. 27 (1930) p. 86.CrossRefGoogle Scholar
27.Kouwenhoven, L.P., Oosterkamp, T.H., Danoesastro, M.W.S., Eto, M., Austing, D.G., Honda, T., and Tarucha, S., Science in press.Google Scholar
28.Wagner, M., Merkt, U., and Chaplik, A.V., Phys. Rev. B 45 (1992) p. 1951. For experimental work, see Refs. 9 and 15.CrossRefGoogle Scholar
29.Thurner, G., Herold, H., Ruder, H., Schlicht, G., and Wunner, G., Phys. Lett. 89A (1982) p. 133.CrossRefGoogle Scholar