Skip to main content Accessibility help

Transport in Quantum Dots: Observation of Atomlike Properties

  • Seigo Tarucha


Recent advances in nanofabrication technologies have enabled us to fabricate semiconductor quantum dots in which electrons are three-dimensionally confined. These quantum dots are often referred to as artificial atoms since their electronic properties—for example the ionization energy and discrete excitation spectrum—resemble those of real atoms. Electrons bound to a nucleus potential encounter sufficiently strong effects of quantum-mechanical confinement and mutual Coulomb interactions that they are well arranged in ordered states, and this leads to the arrangement of atoms in the periodic table. It is well known in atom physics that the threedimensional spherically symmetric potential around atoms gives rise to the shell structure 1s, 2s, 2p, 3s, 3p,…. The ionization energy has a large maximum for atomic numbers 2, 10, 18,…. Up to atomic number 23, these shells are filled sequentially. Hund's rule determines whether a spin-down or a spin-up electron is added. This article describes how closely we can approach the electronic properties of real atoms through the use of semiconductor quantum dots.

Both the effects of quantum confinement and Coulomb interaction become strong in quantum dots when the dot size is comparable to the electron wavelength and contains just a few electrons. The consequence of these factors on transport have only recently been studied in vertical-dot devices, which contain a dot located between source and drain contacts by means of heterostructure tunnel barriers because the few-electron regime is only accessible in the vertical-dot device. Studies include transport measurements through submicron resonant tunneling devices and submicron gated resonant-tunneling devices, and capacitance measurements on submicron double-barrier structures. However quantum-dot devices usually contain some disorder—for instance because of impurities or when the shape of the dot is irregular—which readily causes sample specific inhomogeneity in the electronic properties. Clean quantum dots, in the form of regular disks, have only recently been fabricated in a semiconductor heterostructure (Figure 1), and have been used to study the atomlike properties of artificial atoms.



Hide All
1.Kastner, M.A., Phys. Today 46 (1993) p. 24.
2.Johnson, N., J. Phys. Cond. Matter 7 (1995) p. 965.
3.Schiff, L.I., Quantum Mechanics (MacGraw-Hill, New York, 1949).
4.Reed, M.A., Randall, J.N., Aggarwal, R.J., Matyi, R.J., Moore, T.M., and Wetsel, A.E., Phys. Rev. Lett. 60 (1988) p. 535.
5.Tarucha, S., Tokura, Y., and Hirayama, Y., Phys. Rev. B 44 (1991) p. 13815.
6.Su, B., Goldman, V.J., and Cunningham, J.E., Science 255 (1992) p. 313.
7.Tewordt, M., Martin-Moreno, L., Nicholls, J.T., Pepper, M., Kelly, M.J., Law, V.J., Ritchie, D.A., Frost, J.E.F., and Jones, G.A.C., Phys. Rev. B 45 (1992) p. 14407.
8.Tarucha, S., Honda, T., Saku, T., and Tokura, Y., Surf. Sci. 305 (1994) p. 547.
9.Schmidt, T., Tewordt, M., Blick, R.H., Haug, R.J., Pfannkuche, D., von Klitzing, K., Foerster, A., and Lueth, H., Phys. Rev. B 51 (1995) p. 5570.
10.Dellow, M.W., Beton, P.H., Henini, M., Main, P.C., and Eaves, L., Electron. Lett. 27 (1991) p. 134.
11.Guéret, P., Blanc, N., Germann, R., and Rothuizen, H., Phys. Rev. Lett. 68 (1992) p. 1896.
12.Goodings, C.J., Cleaver, J.R.A., and Ahmed, H., Electron. Lett. 28 (1992) p. 1535.
13.Tarucha, S., Austing, D.G., and Honda, T., Superlattices and Microstructures 18 (1995) p. 121.
14.Kolagunta, V.R., Janes, D.B., Chen, G.L., Webb, K.J., and Melloch, M.R., Superlattices and Microstructures 17 (1995) p. 339.
15.Ashoori, R.C., Stoermer, H.L., Weiner, J.S., Pfeiffer, L.N., Baldwin, K.W., and West, K.W., Phys. Rev. Lett. 71 (1993) p. 613.
16.Ashoori, R.C., Nature (London) 379 (1996) p. 413.
17.Austing, D.G., Honda, T., and Tarucha, S., Semicond. Sci. Technol. 11 (1996) p. 388.
18.Tarucha, S., Austing, D.G., Honda, T., van der Hage, R.J., and Kouwenhoven, L.P., Phys. Rev. Lett. 77 (1996) p. 3613.
19.Macucci, M., Hess, K., and Iafrate, G.J., J. Appl. Phys. 77 (1995) p. 3267.
20.Meirav, U. and Foxman, E.B., Semicond. Sci. Technol. 10 (1995) p. 255.
21.Kouwenhoven, L.P. and McEuen, P.L., in Nanoscience and Technology, edited by Timp, G. (AIP Press, 1997).
22.Neis, J., Haug, R.J., von Klitzing, K., and Ploog, K., Phys. Rev. Lett. 71 (1993) p. 4019.
23.Tanaka, Y. and Akera, H., J. Phys. Soc. Jpn. 66 (1997) p. 15.
24.Tamura, H., Physica E in press.
25.Fock, V., Z. Phys. 47 (1928) p. 446.
26.Darwin, C.G., Proc. Cambridge Philos. Soc. 27 (1930) p. 86.
27.Kouwenhoven, L.P., Oosterkamp, T.H., Danoesastro, M.W.S., Eto, M., Austing, D.G., Honda, T., and Tarucha, S., Science in press.
28.Wagner, M., Merkt, U., and Chaplik, A.V., Phys. Rev. B 45 (1992) p. 1951. For experimental work, see Refs. 9 and 15.
29.Thurner, G., Herold, H., Ruder, H., Schlicht, G., and Wunner, G., Phys. Lett. 89A (1982) p. 133.

Transport in Quantum Dots: Observation of Atomlike Properties

  • Seigo Tarucha


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed