Skip to main content Accessibility help
×
Home

Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique

  • Felix Hofmann (a1), Michael P. Short (a2) and Cody A. Dennett (a3)

Abstract

Structure–property relationships are the foundation of materials science and are essential for predicting material response to driving forces, managing in-service material degradation, and engineering materials for optimal performance. Elastic, thermal, and acoustic properties provide a convenient gateway to directly or indirectly probe materials structure across multiple length scales. This article will review how using the laser-induced transient grating spectroscopy (TGS) technique, which uses a transient diffraction grating to generate surface acoustic waves and temperature gratings on a material surface, nondestructively reveals the material’s elasticity, thermal diffusivity, and energy dissipation on the sub-microsecond time scale, within a tunable subsurface depth. This technique has already been applied to many challenging problems in materials characterization, from analysis of radiation damage, to colloidal crystals, to phonon-mediated thermal transport in nanostructured systems, to crystal orientation and lattice parameter determination. Examples of these applications, as well as inferring aspects of microstructural evolution, illustrate the wide potential reach of TGS to solve old materials challenges and to uncover new science. We conclude by looking ahead at the tremendous potential of TGS for materials discovery and optimization when applied in situ to dynamically evolving systems.

Copyright

References

Hide All
1.Tanenbaum, M., Mills, A.D., J. Electrochem. Soc. 108, 171 (1961).
2.Jonas, J.J., Sellars, C.M., Tegart, W.J.M., Metall. Rev. 14, 1 (1969).
3.Ishihara, T., Matsuda, H., Takita, Y., J. Am. Chem. Soc. 116, 3801 (1994).
4.Harris, A.M., Lee, E.C., J. Appl. Polym. Sci. 107, 2246 (2008).
5.Li, Y.J., Savan, A., Kostka, A., Stein, H.S., Ludwig, A., Mater. Horiz. 5, 86 (2018).
6.Curtarolo, S., Hart, G.L.W., Nardelli, M.B., Mingo, N., Sanvito, S., Levy, O., Nat. Mater. 12, 191 (2013).
7.Hosemann, P., Scr. Mater. 143, 161 (2018).
8.Bei, H., Shim, S., George, E.P., Miller, M.K., Herbert, E.G., Pharr, G.M., Scr. Mater. 57, 397 (2007).
9.De Jonge, N., Ross, F.M., Nat. Nanotechnol. 6, 695 (2011).
10.Hofmann, F., Tarleton, E., Harder, R.J., Phillips, N.W., Ma, P.-W.W., Clark, J.N., Robinson, I.K., Abbey, B., Liu, W., Beck, C.E., Sci. Rep. 7, 45993 (2017).
11.Donnelly, C., Guizar-Sicairos, M., Scagnoli, V., Gliga, S., Holler, M., Raabe, J., Heyderman, L.J., Nature 547, 328 (2017).
12.Ulvestad, A., Singer, A., Clark, J.N., Cho, H.M., Kim, J.W., Harder, R., Maser, J., Meng, Y.S., Shpyrko, O.G., Science 348, 1344 (2015).
13.Wright, R.N., Sham, T.-L., “Status of Metallic Structural Materials for Molten Salt Reactors” (2018), doi:INL/EXT-18–45171.
14.Corwin, W.R., Lucas, G.E., in ASTM Symposium on the Use of Nonstandard Subsized Specimens for Irradiated Testing (ASTM, Philadelphia, PA, 1986), p. 379, https://inis.iaea.org/search/search.aspx?orig_q=RN:18065732.
15.Tanguy, B., Besson, J., Piques, R., Pineau, A., Eng. Fract. Mech. 72, 49 (2005).
16.Server, W.L., Nanstad, R.K., Odette, G.R., “Use of Reactor Pressure Vessel Surveillance Materials for Extended Life Evaluations Using Power and Test Reactor Irradiations” (2012), https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/070/43070853.pdf.
17.Onizawa, K., Fukaya, K., Nishiyama, Y., Suzuki, M., Kaihara, S., Nakamura, T., Int. J. Press. Vessels Pip. 70, 201 (1997).
18.Getto, E., Sun, K., Monterrosa, A.M., Jiao, Z., Hackett, M.J., Was, G.S., J. Nucl. Mater. 480, 159 (2016).
19.Garner, F.A., Toloczko, M.B., J. Nucl. Mater. 251, 252 (1997).
20.Wang, Y., Yousefzadeh, B., Chen, H., Nassar, H., Huang, G., Daraio, C., Phys. Rev. Lett. 121, 194301 (2018).
21.Cha, J., Daraio, C., Nat. Nanotechnol. 13, 1016 (2018).
22.Dyre, J.C., Rev. Mod. Phys. 78, 953 (2006).
23.Tanaka, H., Kawasaki, T., Shintani, H., Watanabe, K., Nat. Mater. 9, 324 (2010).
24.Boechler, N., Theocharis, G., Daraio, C., Nat. Mater. 10, 665 (2011).
25.Nesterenko, V.F., Dynamics of Heterogeneous Materials (Springer, New York, 2001).
26.Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 2, 466 (2009).
27.Ryder, M.R., Civalleri, B., Tan, J.C., Phys. Chem. Chem. Phys. 18, 9079 (2016).
28.Tan, J.C., Civalleri, B., Lin, C.C., Valenzano, L., Galvelis, R., Chen, P.F., Bennett, T.D., Mellot-Draznieks, C., Zicovich-Wilson, C.M., Cheetham, A.K., Phys. Rev. Lett. 108, 095502 (2012).
29.Ryder, M.R., Civalleri, B., Cinque, G., Tan, J.C., CrystEngComm 18, 4303 (2016).
30.Maznev, A.A., Mazurenko, A., Zhuoyun, L., Gostein, M., Rev. Sci. Instrum. 74, 667 (2003).
31.Maznev, A.A., Nelson, K.A., Rogers, J.A., Opt. Lett. 23, 1319 (1998).
32.Johnson, J.A., Maznev, A.A., Bulsara, M.T., Fitzgerald, E.A., Harman, T.C., Calawa, S., Vinels, C.J., Turner, G., Nelson, K.A., J. Appl. Phys. 111, 023503 (2012).
33.Nelson, K.A., Casalegno, R., Miller, R.J.D., Fayer, M.D., J. Chem. Phys. 77, 1144 (1982).
34.Dennett, C.A., Short, M.P., Appl. Phys. Lett. 110, 211106 (2017).
35.Hofmann, F., Mason, D.R., Eliason, J.K., Maznev, A.A., Nelson, K.A., Dudarev, S.L., Sci. Rep. 5, 16042 (2015).
36.Peter, G.M., Nanotechnology 16, 995 (2005).
37.Every, A.G., Kim, K.Y., Maznev, A.A., J. Acoust. Soc. Am. 102, 1346 (1997).
38.Favretto-Cristini, N., Komatitsch, D., Carcione, J.M., Cavallini, F., Ultrasonics 51, 653 (2011).
39.Du, X., Zhao, J.C., npj Comput. Mater. 3 (2017), doi:10.1038/s41524–017–0019-x.
40.Every, A.G., Maznev, A.A., Grill, W., Pluta, M., Comins, J.D., Wright, O.B., Matsuda, O., Sachse, W., Wolfe, J.P., Wave Motion 50, 1197 (2013).
41.Brown, J.M., Ultrasonics 90, 23 (2018).
42.Käding, O.W., Skurk, H., Maznev, A.A., Matthias, E., Appl. Phys. A 61, 253 (1995).
43.Dennett, C.A., Short, M.P., J. Appl. Phys. 123, 215109 (2018).
44.Royer, D., Dieulesaint, E., J. Acoust. Soc. Am. 76, 1438 (1984).
45.Goossens, J., Leclaire, P., Xu, X., Glorieux, C., Martinez, L., Sola, A., Siligardi, C., Cannillo, V., Van der Donck, T., Celis, J.-P., J. Appl. Phys. 102, 053508 (2007).
46.Rogers, J.A., Fuchs, M., Banet, M.J., Hanselman, J.B., Logan, R., Nelson, K.A., Appl. Phys. Lett. 71, 225 (1997).
47.Vega-Flick, A., Eliason, J.K., Maznev, A.A., Khanolkar, A., Abi Ghanem, M., Boechler, N., Alvarado-Gil, J.J., Nelson, K.A., Rev. Sci. Instrum. 86 (2015), doi:10.1063/1.4936767.
48.Dennett, C.A., Cao, P., Ferry, S.E., Vega-Flick, A., Maznev, A.A., Nelson, K.A., Every, A.G., Short, M.P., Phys. Rev. B 94, 214106 (2016).
49.Dienes, G.J., Phys. Rev. 86, 228 (1952).
50.Folweiler, R.G., Brotzen, F.R., Acta Metall . 7, 716 (1959).
51.Dieckamp, H., Sosin, A., J. Appl. Phys. 27, 1416 (1956).
52.Du, X., Zhao, J.C., Scr. Mater. 152, 24 (2018).
53.Gasteau, D., Chigarev, N., Ducousso-Ganjehi, L., Gusev, V.E., Jenson, F., Calmon, P., Tournat, V., J. Appl. Phys. 119, 43103 (2016).
54.Xu, Y., Aizawa, T., Kihara, J., Mater. Trans. JIM 38, 536 (1997).
55.Li, D.Y., Szpunar, J.A., Acta Metall. Mater. 40, 3277 (1992).
56.Hofmann, F., Nguyen-Manh, D., Gilbert, M.R., Beck, C.E., Eliason, J.K., Maznev, A.A., Liu, W., Armstrong, D.E.J., Nelson, K.A., Dudarev, S.L., Acta Mater . 89, 352 (2015).
57.Rieth, M., Dudarev, S.L., Gonzalez de Vicente, S.M., Aktaa, J., Ahlgren, T., Antusch, S., Armstrong, D.E.J., Balden, M., Baluc, N., Barthe, M.-F., Basuki, W.W., Battabyal, M., Becquart, C.S.. Blagoeva, D., Boldyryeva, H., Brinkmann, J., Celino, M., Ciupinski, L., Correia, J.B., De Backer, A., Domain, C., Gaganidze, E., García-Rosales, C., Gibson, J., Gilbert, M.R., Giusepponi, S., Gludovatz, B., Greuner, H., Heinola, K., Höschen, T., Hoffmann, A., Holstein, N., Koch, F., Krauss, W., Li, H., Lindig, S., Linke, J., Linsmeier, Ch., López-Ruiz, P., Maier, H., Matejicek, J., Mishra, T.P., Muhammed, M., Muñoz, A., Muzyk, M., Nordlund, K., Nguyen-Manh, D., Opschoor, J., Ordás, N., Palacios, T., Pintsuk, G., Pippan, R., Reiser, J., Riesch, J., Roberts, S.G., Romaner, L., Rosiński, M., Sanchez, M., Schulmeyer, W., Traxler, H., Ureña, A., van der Laan, J.G., Veleva, L., Wahlberg, S., Walter, M., Weber, T., Weitkamp, T., Wurster, S., Yar, M.A., You, J.H., Zivelonghi, A., J. Nucl. Mater. 432, 482 (2013).
58.Zhou, Z., Dudarev, S.L., Jenkins, M.L., Sutton, A.P., Kirk, M.A., J. Nucl. Mater. 367, P, 305 (2007).
59.Armstrong, D.E.J., Edmondson, P.D., Roberts, S.G., Appl. Phys. Lett. 102, 1 (2013).
60.Duncan, R.A., Hofmann, F., Vega-Flick, A., Eliason, J.K., Maznev, A.A., Every, A.G., Nelson, K.A., Appl. Phys. Lett. 109, 151906 (2016).
61.Dennett, C.A., So, K.P., Kushima, A., Buller, D.L., Hattar, K., Short, M.P., Acta Mater . 145, 496 (2018).
62.Dennett, C.A., Buller, D.L., Hattar, K., Short, M.P., Nucl. Instrum. Methods Phys. Res. B 440, 126 (2019).
63.Friedel, J., London, Edinburgh Dublin Philos. Mag. J. Sci. 44, 444 (1953).
64.Parkin, D., Goldstone, J., Simpson, H., Hemsky, J., J. Phys. F Met. Phys. 17, 577 (1987).
65.Li, N., Hattar, K., Misra, A., J. Nucl. Mater. 439, 185 (2013).
66.Boechler, N., Eliason, J.K., Kumar, A., Maznev, A.A., Nelson, K.A., Fang, N., Phys. Rev. Lett. 111, 036103 (2013).
67.Otsuka, P.H., Mezil, S., Matsuda, O., Tomoda, M., Maznev, A.A., Gan, T., Fang, N., Boechler, N., Gusev, V.E., Wright, O.B., New J. Phys. 20, 013026 (2018).
68.Hiraiwa, M., Abi Ghanem, M., Wallen, S.P., Khanolkar, A., Maznev, A.A., Boechler, N., Phys. Rev. Lett. 116, 198001 (2016).
69.Eliason, J.K., Vega-Flick, A., Hiraiwa, M., Khanolkar, A., Gan, T., Boechler, N., Fang, N., Nelson, K.A., Maznev, A.A., Appl. Phys. Lett. 108, 061907 (2016).
70.Norajitra, P., Giniyatulin, R., Hirai, T., Krauss, W., Kuznetsov, V., Mazul, I., Ovchinnikov, I., Reiser, J., Ritz, G., Ritzhaupt-Kleissl, H.J., Widak, V., Fusion Eng. Des. 84, 1429 (2009).
71.Norajitra, P., Antusch, S., Giniyatulin, R., Kuznetsov, V., Mazul, I., Ritzhaupt-Kleissl, H.J., Spatafora, L., Fusion Eng. Des. 86, 1656 (2011).
72.Ziman, J.M., Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, UK, 2001).
73.Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R., J. Appl. Phys. 93, 793 (2003).
74.Cahill, D.G., Braun, P.V., Chen, G., Clarke, D.R., Fan, S., Goodson, K.E., Keblinski, P., King, W.P., Mahan, G.D., Majumdar, A., Maris, H.J., Phillpot, S.R., Pop, E., Shi, L., Appl. Phys. Rev. 1, 011305 (2014).
75.Derlet, P.M., Nguyen-Manh, D., Dudarev, S.L., Phys. Rev. B 76, 54107 (2007).
76.Nordlund, K., Zinkle, S.J., Sand, A.E., Granberg, F., Averback, R.S., Stoller, R.E., Suzudo, T., Malerba, L., Banhart, F., Weber, W.J., Willaime, F., Dudarev, S.L., Simeone, D., J. Nucl. Mater. 512, 450 (2018).
77.Sand, A.E., Byggmästar, J., Zitting, A., Nordlund, K., J. Nucl. Mater. 511, 64 (2018).
78.Ferry, S.E., “Breaking the Bottleneck in Radiation Materials Science with Transient Grating Spectroscopy,” PhD thesis, Massachusetts Institute of Technology (2018).
79.Loomis, B.A., Gerber, S.B., Acta Metall . 21, 165 (1973).
80.Fujitsuka, M., Tsuchiya, B., Mutoh, I., Tanabe, T., Shikama, T., J. Nucl. Mater. 283, (Pt.2), 1148 (2000).
81.Roedig, M., Kuehnlein, W., Linke, J., Pitzer, D., Merola, M., Rigal, E., Schedler, B., Visca, E., J. Nucl. Mater. 329, 766 (2004).
82.Peacock, A.T., Barabash, V., Dänner, W., Rödig, M., Lorenzetto, P., Marmy, P., Merola, M., Singh, B.N., Tähtinen, S., van der Laan, J., Wu, C.H., J. Nucl. Mater. 329, 173 (2004).
83.Blakemore, J.S., Solid State Physics, 2nd ed. (Cambridge University Press, Cambridge, UK, 1985).
84.Johnson, J.A., Maznev, A.A., Cuffe, J., Eliason, J.K., Minnich, A.J., Kehoe, T., Torres, C.M.S., Chen, G., Nelson, K.A., Phys. Rev. Lett. 110, 25901 (2013).
85.Huberman, S., Chiloyan, V., Duncan, R.A., Zeng, L., Jia, R., Maznev, A.A., Fitzgerald, E.A., Nelson, K.A., Chen, G., Phys. Rev. Mater. 1, 054601 (2017).
86.Johnson, J.A., Eliason, J.K., Maznev, A.A., Luo, T., Nelson, K.A., J. Appl. Phys. 118 (2015), doi:10.1063/1.4933285.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed