Skip to main content Accessibility help
×
Home

Thermodynamic Calculations as the Basis for CVD Production of Silicide Coatings

  • Claude Bernard, Michel Pons, Elisabeth Blanquet and Roland Madar

Extract

The exponential increase in computing power realized over the past three decades has required devices of ever-decreasing dimensions. With these reductions in feature size, each generation of circuit technology creates a new set of materials-science challenges, as exemplified by the use of silicide-based diffusion barriers.

The use of transition-metal silicides in the semiconductor industry began in the early 1980s with (in retrospect) fairly thick films, simple compositions, and minimal microstructural requirements. The implementation of thin-film binary silicides in integrated circuit (IC) applications required the development of appropriate modeling techniques to select the deposited metal, its gaseous precursor, and the Silicon precursor. These vectors were used to define experimental conditions to yield desired films. Chemical-vapor-deposition (CVD) experiments were simulated and CVD phase diagrams were used to describe the changing film properties with different thermodynamic conditions.

In the early 1990s, research began to focus on CVD of ternary Systems (Ta-Si-N, Ti-Si-N). Modeling these complex Systems required optimization of the thermodynamic data and careful evaluation of the ternary phase diagrams.

Current-generation materials are deposited in extremely thin layers (ULSI, or ultralarge-scale integration), composed of multiple elements from a variety of gas sources, an d have tailored micro-structures. As described in this article, early thermodynamic modeis helped develop deposition techniques for early-generation silicides. As the technological requirements increased, the modeling method s evolved in parallel, yielding continued insight into the relevant processes. Current work on CVD modeling couples thermodynamic calculations with heat and mass transfer. Incorporating both kinetic and thermodynamic effects, these methods provide a more realistic description of the CVD reactor.

Copyright

References

Hide All
1.Dennard, R.H., Gaensslen, R.H., Yu, M., Rideout, V.L., Bassous, B., and Leblanc, A.R., IEEE J. Solid State Circuits 9 (1976) p. 256.
2.Meindl, J.D., Ratnakumar, K.N., Gerzerbg, L., and Saraswat, K.C., in Proc. Int. Conf. on Solid State Circuits, edited by Winner, L. (Institute of Electronic and Electrical Engineering, New York, 1981) p. 36.
3.Pauleau, Y., in Microeleclronics Materials and Processes, NATO ASI Series, Series E, Applied Sciences, edited by Levy, R.A. (Kluwer Academic Press, Dordrecht, 1989) p. 164.
4.Sinha, A.K., Cooper, J.A. Jr., and Levinstein, H.J., IEEE Electron Device Lett. 4 (1982) p. 90.
5.D'Heurle, F.M., in VLSI Science and Technology, edited by Dell'Occa, C.J. and Bullis, W.M. (The Electrochemical Society, Pennington, NJ, 1982) p. 194.
6.Murarka, S.P., J. Vac. Sci. Technol. 17 (1980 p. 769.
7.Nicolet, M.A. and Lau, S.S., in VLSI Electronics Microstructure Science, vol. 6, edited by Einspruch, N.G. and Larrabee, G.B. (Academic Press, New York, 1983) p. 348.
8.Murarka, S.P., Silicides for VLSI Applications (Academic Press, New York, 1983).
9.Bernard, C. and Madar, R., in Chemical Vapor Deposition of Refractory Metals and Cerainics, edited by Besmann, T.M. and Gallois, B.M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, 1990) p. 3.
10.Bernard, C. and Madar, R., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T.M., Gallois, B.M., and Warren, J.W. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, 1992) p. 3.
11.Vahlas, C., Chevalier, P.Y., and Blanquet, E., CALPHAD 13 (1989) p. 273.
12.Spear, K.E. and Dirkx, R.R., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T.M. and Gallois, B.M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, 1990) p. 19.
13.Barbier, J.N. and Bernard, C., CALPHAD 10 (1986) p. 206.
14.Ducarroir, M. and Bernard, C., in Proc. 5th Int. Conf. on Chemical Vapor Deposition, edited by Blocher, J.M. Jr., Hintermann, H.E., and Hall, L.H. (The Electrochemical Society, Princeton, 1975) p. 72.
15.Bernard, C., Vahlas, C., Million-Brodaz, J.F., and Madar, R., in Proc. 10th Int. Conf. on Chemical Vapor Deposition, edited by Cullen, G.W. (The Electrochemical Society, Princeton, 1975) p. 700.
16.Madar, R. and Bernard, C., J. Phys. 5 (50) (1989) p. C5479.
17.Mastromatteo, E., Regolini, J.L., D'Anterroches, C., Dutartre, D., Bensahel, D., Mercier, J., Bernard, C., and Madar, R., in Proc. 11th Int. Conf. on Chemical Vapor Deposition, edited by Spear, K.E. and Cullen, G.W. (The Electrochemical Society, Pennington, NJ, 1990) p. 459.
18.Blanquet, E., Vahlas, C., Madar, R., Palleau, J., Torres, J., and Bernard, C., Thin Solid Films 177 (1989) p. 189.
19.Thomas, N., Suryanarayana, P., Blanquet, E., Vahlas, C., Madar, R., and Bernard, C., J. Electrochem. Soc. 140 (1993) p. 475.
20.Nicolet, M.A., Appl. Surf Sci. 91 (1995) p. 112.
21.Blanquet, E., Dutron, A.M., Ghetta, V., Bernard, C., and Madar, R., Microelec. Eng. 37/38 (1997) p. 189.
22.Pons, M., Barbier, J.N., Bernard, C., and Madar, R., Appl. Surf Sci. 73 (1993) p. 71.
23.Pons, M., Blanquet, E., Dedulle, J.M., Garcon, I., Madar, R., and Bernard, C., J. Electrochem. Soc. 143 (1996) p. 3727.

Thermodynamic Calculations as the Basis for CVD Production of Silicide Coatings

  • Claude Bernard, Michel Pons, Elisabeth Blanquet and Roland Madar

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed